TT 1 1 1	C/ 1 1	C	•	C /1	•	· 1·	
Table I	Standard	for compa	arison	tor the	various	indices	
14010 1	Standard	tor compt	110011	ioi une	(arroub	marees	

Indices	Contamination factor	Contamination degree	Ecological risk (ER)	Ecological risk	Pollution load index (PLI)		Geo-accumulation index (Igeo)	
	(CF)	(CD)		Index (R')				
Low risk	CF<1	CD<8	Er <40	R'<150	No pollution	PLI<1	Uncontamination	Igeo ≤ 0
Moderate risk	$1 \leq CF \leq 3$	8 ≤ CD<16	$\mathrm{Er}\;40 \leq \mathrm{Er} <\!\!80$	150≤ R'<300	-	-	Uncontaminated to moderately contamination	$0 \le Igeo \le 1$
Considerable	3≤ CF<6	$16 \le CF \le 32$	$80 \le \text{Er} \le 160$	300≤ R'<600	Moderate	1 <pli<2< td=""><td>Moderate contamination</td><td>1<igeo B≤2</igeo </td></pli<2<>	Moderate contamination	1 <igeo B≤2</igeo
High risk	-	-	$160 \le \mathrm{Er} < 320$	-	Heavy pollution	2 <pli<3< td=""><td>Moderate to heavy contamination</td><td>$2 \le Igeo \le 3$</td></pli<3<>	Moderate to heavy contamination	$2 \le Igeo \le 3$
Very high	$CF \ge 6$	CD>32	$Er \ge 320$	R '≥600	Extremely heavy pollution	3 <pli< td=""><td>Heavy contamination</td><td>$3 \le Igeo \le 4$</td></pli<>	Heavy contamination	$3 \le Igeo \le 4$
-	-	-	-	-	-	-	Heavy to extremely contamination	$4 < Igeo \le 5$
-	-	-	-	-	-	-	Extremely contaminated	Igeo ≥ 5

Note: Geo-accumulation index is by Muller (1969) have been widely applied by Ghaleno et al. (2015), Bhutiani et al. (2017), Todorova et al. (2016), Izah et al. (2017c); Note: CF, CD, ER, R" was developed by Hakanson (1980) and have been widely applied by Bhutiani et al. (2017), Izah et al. (2017d, 2018), Singovszka et al. (2014), Todorova et al. (2016); PLI have been widely applied in environment risk assessment by Tomlinson et al. (1980), Bhutiani et al. (2017), Izah et al. (2017d)