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Abstract Virus-induced gene silencing (VIGS) is an important tool for gene function analysis in plants. In the present study, the 
function identification of a candidate gene named Tadhn1312 encoding Dehydrin protein obtained from the high-throughput 
transcriptome was carried out by VIGS. Leaves appeared the chlorotic phenotype and the transcript level of TaPDS decreased rapidly 
at 7 days after the inoculation by BSMV: TaPDS, which indicated that the virus had successfully infected wheat leaves and the 
BSMV system was efficient. The chlorophyll content of leaves with BSMV: TaPDS and BSMV: Tadhn1312 inoculation decreased at 
7 days, and reached significant level compared with the control. After the inoculation by BSMV: Tadhn1312, the transcript level of 
Tadhn1312 was rapidly decreased at 7 days, and reached the minimum value at 21 days, indicated that Tadhn1312 had been silenced. 
The spike differentiation procession of wheat plants inoculated by BSMV: Tadhn1312 was late than that inoculated by BSMV: 00. 
The result showed that the silencing of Tadhn1312 prolonged the spike differentiation process, illustrating that Tadhn1312 gene was 
involved in the spike differentiation process of wheat directly or indirectly. 
Keywords Wheat; Gene silencing; BSMV; Spike differentiation 

Wheat (Triticum aestivum L.) is one of the most widely grown crop and essential for global food security, and its 
planting area is determined by the developmental characteristics of wheat cultivars (Reynolds et al., 2011). 
Vernalization is a crucial phase and also a complicated process regulated by many genes in wheat development 
process. Until now, four genes (VRN1, VRN2, VRN3 and VRN-D4) have been cloned (Distelfeld et al., 2009; 
Kippes et al., 2014; Jin and Wei, 2016; Muterko et al., 2016). VRN1 encodes a MADS-box transcriptional factor 
and the dominant VRN-A1 allele exhibits spring growth habit (Tanaka et al., 2018). VRN2, including two repeated 
genes ZCCT1 and ZCCT2 that encode proteins carrying putative a zine finger and a CCT domain, acts as long day 
repressors of flowering and is down-regulated by vernalization (Kippes et al., 2016). VRN3 is highly similar to 
Arabidopsis protein flowering locus t (FT) and also a flowering promoting gene (Jin and Wei, 2016). According to 
the current research results of VRN genes, the genotype between spring and winter wheat variety can be 
distinguished. Yuan reported that the genotypes among semi-winter, winter and strong winter were not 
distinguished by the allelic composition of VRN1. For example, the genotype of YM49-198 (semi-winter), J841 
(winter), FM (strong winter) was van-A1, vrn-B1, vrn-D1, respectively (Yuan et al., 2008), so it is necessary to 
further explore new genes or molecular markers related to vernalization (Huang et al., 2018). 

Plants have evolved multiple physiological and biochemical strategies at gene or protein level to adapt 
unfavorable environmental state during developmental process. Under low-temperature, multiple genes are 
induced and their expression products include both regulatory and functional proteins (Kosova et al., 2014). These 
proteins directly participate in the resistance to low-temperature, such as dehydrin (DHN) (Hossain et al., 2013). 
Dehydrin, also was known as LEA II protein, which was composed of approximately 82-575 amino acids. The 
dehydrin protein typically has a conserved lysine-rich K fragment composed of 15 amino acids 
(EKKGIMDKIKEKLPG), S fragment composed of a series of serine residues and Y fragment composed of 
conservative motifs T/VDEYGNP (Banerjee and Roychoudhury, 2016; Hill et al., 2016). According to the 
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difference in amino acid sequence of Y, S and K fragments, dehydrin proteins also can be divided into 5 categories: 
Kn, SKn, KnS, YsKn and YnSK2 (Allagulova et al., 2003). Among them, SKn, KnS and YsKn are acidic proteins, 
YnSK2 is a neutral and basic protein, Kn is an acidic and neutral protein (Shekhawat et al., 2011; Wang et al., 
2014). YnSK2 can be induced by drought and Abscisic acid (ABA) (Suprunova et al., 2004; Binott et al., 2017); 
SKn can be induced by low temperature, but it is less expressed under drought and ABA (Fowler et al., 2001), Kn, 
KnS and YsKn can be induced by low temperature (Ismail et al., 1999; Kosova et al., 2010; Archambault and 
Stromvik, 2012). Therefore, the different conserved sequences of dehydrin determine its acidity and alkalinity, and 
further determine its function. 

With the rapid application of high-throughput sequencing technologies, many genes have been isolated and cloned 
from wheat. But how to validate gene functions has become a bottleneck because of the lower genetic 
transformation efficiency comparing with Arabidopsis and rice, due to its complicated and huge genome and 
polyploidy characteristics. Nowadays, Virus-induced gene silencing (VIGS) has been developed as an effective 
transgenic technology for determining gene functions in dicot and monocot cereals (Ma et al., 2012), which only 
partial gene sequence is sufficient for silencing gene (Senthil-Kumar and Mysore, 2011). The function of hundreds 
of plant genes involved in defense response pathways, plant development, and metabolism have been identified by 
VIGS (Guo et al., 2010; Rivas et al., 2014). 

We had conducted a high-throughput transcriptome sequencing analysis using winter wheat cultivar Jing841 (J841) 
and spring wheat cultivar Liaochun10 (LC10) as experimental materials under vernalization and non-vernalization 
treatments (Feng et al., 2016), and obtained many differentially expressed genes; among them, a differentially 
expressed candidate Unigene1312 encoding Dehydrin protein was selected and temporarily named Tadhn1312. 
Expression analysis showed that Tadhn1312 was expressed in LC10 and J841, but the expression level in J841 
was higher than that in LC10 under vernalization treatment, indicating that the gene was responsive to 
vernalization treatment. In the present study, we employed the Barley Stripe Mosaic Virus (BSMV) based VIGS 
system for the primary function verification of Tadhn1312 gene 

1 Results and Analysis 
1.1 Phenotypes of wheat leaves after the inoculation with BSMV Virus 
Virus-Induced Gene Silencing is a powerful reverse genetics approach for knocking down target genes expression 
to study their functions and is widely used in the regulation of plant metabolism, growth, and development (Guo 
et al., 2010). A 242 bp coding sequence of Tadhn1312 gene was amplified and used to construct the BSMV vector, 
and designated as BSMV: Tadhn1312 (Figure 1). When wheat plants were at two-leaf stage, BSMV: Tadhn1312 
was used to inoculate wheat leaves, BSMV: TaPDS as the positive control and BSMV: 00 as the negative control. 

Figure 1 PCR amplification of Tadhn1312 (A) and double enzyme digestion of BSMV: Tadhn1312 (B) 
Note: M1:DL2000 DNA marker; 1: PCR product of Tadhn1312; M2: DL10000 DNA marker; 2: Recombinant plasmid BSMV: 
Tadhn1312; 3: Double digestion of BSMV: Tadhn1312 

The second leaves of wheat plants appeared virus symptom and chlorotic phenotype at 7 days after inoculated 
with BSMV: TaPDS and BSMV: Tadhn1312; and the obvious photo bleaching phenotype were shown at 14 days, 
indicating that the virus had successfully infected wheat leaves. At 21 days, the third leaves showed radial banded 
white spots or the entire leaves showed photo bleaching (Figure 2A). As time went by, the phenotype gradually 
subsided, but the young leaves showed mottled chlorotic phenotype at 28 days. Obvious bleaching lasted for 35 
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days after inoculation. The leaves of negative control BSMV: 00 had no bleaching phenotype. Among 50 wheat 
leaves infected by BSMV: TaPDS and BSMV: Tadhn1312, respectively, 32 and 29 leaves showed chlorosis with 
silencing efficiencies of 64% and 58% and reached the significant level (Figure 2B), indicating that the VIGS 
system is effective. 

Figure 2 Magnified image of leaves at 21d after BSMV: Tadhn1312 inoculation showing chlorotic phenotype and Infection rate 
statistics  
Note: A: chlorotic phenotype; B: Infection rate statistics. Each value is the mean±standard deviation of three independent biological 
replicates; * indicate the significant difference at 0.05 level (p<0.05) 

1.2 Chlorophyll content  
Chlorophyll content was measured every 7 days after the inoculation. The result showed that the chlorophyll 
content of leaves with BSMV: TaPDS inoculation decreased at 7 days, and reached the minimum level at 21 days, 
accounted for 43.8% of BSMV: 00, the difference was extremely significant. At 28 d, the chlorophyll content 
gradually increased, but was still lower than that of negative controls BSMV: 00 (Figure 3 A). 

1.3 Transcription level of target gene after BSMV recombinant vector inoculation  
qRT-PCR was used to measure the Tadhn1312 and TaPDS transcript abundances at different time after inoculation. 
The relative expression level of TaPDS rapidly decreased at 7 days, and continued to decrease and reached the 
lowest level at 21 days. At 28 days, the transcript level TaPDS gradually increased, and recovered to about half of 
the initial level at 35 days, indicating that the expression of TaPDS gene had been significantly inhibited. The 
expression of target gene Tadhn1312 exhibited similar expression trend as TaPDS after BSMV virus inoculation. 
The transcript level of Tadhn1312 was rapidly decreased at 7 days, and reached the minimum value at 21 days, 
accounting for 27% of that of negative control and reached the significant level, suggesting that the target gene 
Tadhn1312 was inhibited successfully (Figure 3B).  

Figure 3 Chlorophyll content and relative expression analysis inoculated by BSMV recombinant vector from 0 to 35d in wheat with 
BSMV: TaPDS and BSMV: Tadhn1312.  
Note: A: chlorophyll content. B: The relative expression pattern of TaPDS and Tadhn1312 by using qRT-PCR; β-actin was used as 
internal control; Each value is the mean±standard deviation of three independent biological replicates; * indicate the significant 
difference between BSMV: TaPDSP and BSMV: 00 at 0.05 level (p<0.05). ** indicate the significant difference between BSMV: 
Tadhn1312 and BSMV: 00 at 0.05 level (p<0.05) 
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1.4 Spike differentiation Observation after Inoculation with BSMV: Tadhn1312 
Wheat spike differentiation is affected by various factors, including cultivar, illumination and temperature. The 
double ridge stage is an important indicator for passing through vernalization process (Baloch et al., 2003). The 
spike differentiation of negative control plants (BSMV: 00) and BSMV: Tadhn1312 remain single ridge stage at 
14 d after BSMV virus inoculation. At 21 days, the spike differentiation of negative control plants (BSMV: 00) 
entered the early double ridge stage, while the spike differentiation of plants inoculated with BSMV: Tadhn1312 
still remained in single ridge stage. When the spike differentiation of plants inoculated with BSMV: Tadhn1312 
entered into the early double ridge stage at 28 days, the spike differentiation of control plants inoculated with 
BSMV: 00 has been in the middle of the double edges (Figure 4). The result showed that the silencing of 
Tadhn1312 prolonged the spike differentiation process, illustrating Tadhn1312 gene was involved in the spike 
differentiation process of wheat directly or indirectly.  

Figure 4 Spike differentiation process of wheat plants after BSMV virus inoculation with BSMV: 00 and BSMV: Tadhn1312 
Note: a, b, c: BSMV virus inoculation with BSMV:00; d, e, f: BSMV virus inoculation with BSMV: Tadhn1312; a, d: BSMV virus 
inoculation at 14 days; b, e: BSMV virus inoculation at 21 days; c, f: BSMV virus inoculation at 28 days. The proposed scale is 
0.15mm 

2 Discussion 
As a hydrophilic protein with high thermal stability, dehydrin widely exists in plants and can protect intra-cellular 
proteins and membrane structure from damage (Abedini et al., 2017). In recent years, dehydrin has attracted much 
attention due to its protective effect on plants under abiotic stress (Ramakrishna and Gokare, 2011; Yu and Yang, 
2016). The expression of CaDHN1 from pepper was markedly upregulated in response to cold, salt, osmotic 
stresses and salicylic acid (SA) treatment, while the silencing of CaDHN1 using the virus-induced gene silencing 
(VIGS) technique led to decreased tolerance to cold, salt and osmotic induced stresses (Chen et al., 2015). In 
another work, seven dehydrin genes were up-regulated under low-temperature stress in loquat, and the expression 
of dehydrin gene in the cultivars with strong cold-resistance was greater compared to those with weak cold 
resistance (Xu et al., 2014). The transgenic Arabidopsis plants with over-expressed IpDHN gene showed a 
significant enhancement in tolerance to salt/drought stresses, less accumulation of hydrogen peroxide (H2O2) and 
the superoxide radical (O-2(-)), accompanied by increasing activity of the antioxidant enzyme system in vivo 
(Zhang et al., 2018). There are many reports about dehydrin related to abiotic or biotic stress (Guo et al., 2000; 
Sun et al., 2000; Kumar et al., 2014), while there are fewer literatures about dehydrin related to wheat 
development. Sequencing analysis showed that Tadhn1312 was highly similar with T.durum Dehydrin mRNA 
pTd38 and TaCOR80, with 99% and 96% identity, respectively. Kobayashi et al. reported that COR genes were 
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up-regulated and the COR proteins were accumulated more in winter cultivar than spring one in the cold 
acclimation process (Kobayashi et al., 2005). 

Vernalization is a periodic characteristic, and the vernalization treatment duration and optimum temperature of 
wheat varieties with different developmental patterns are different. Yin et al. reported that spring wheat cultivars 
could accomplish the transition from the vegetative to the reproductive phase under non-vernalization condition 
and finish the spike differentiation process; the spike differentiation was still at the single ridge stage in winter 
wheat cultivar BJ No.10 and semi-winter cultivar ZM 9405 under non-vernalization after sowing 62-d, 48 d, 
respectively, indicating that winter wheat and semi-winter cultivars could flower and head normally only after 
vernalization treatment (Yin et al., 2017). The VIGS technique is conducted to silence target genes by using the 
plant’s RNAi-mediated antiviral defense mechanism (Lee et al., 2017). After constructing recombinant BSMV 
infected wheat leaves in this study, the transcript level of the target gene decreased sharply, imaging that BSMV 
had successfully silenced the endogenous gene. The spike differentiation process caused by silencing of the 
Tadhn1312 gene was later than that of the negative control, indicating that Tadhn1312 has a promoting effect on 
wheat developmental process. While the silencing duration caused by VIGS can only be maintained for 
approximately 30 days, which may bring difficulties for long-term observation of plant phenotype, but VIGS 
technique still has incomparable advantages than other gene function research methods. 

3 Materials and Methods 
3.1 Plant materials and treatment 
The spring wheat cultivar Liaochun10 (LC10) was used in this study, provided by the National Engineering 
Research Center for Wheat. Plump seeds were placed on moist filter paper in petri dishes and placed in the 
greenhouse at (25±2)°C with 16 h/8 h day/night photoperiod cycles and photon flux density of approximately 
300µmol/ (m-2·s-1) and 60% relative humidity. After germination, seeds were placed in the vernalization box for 
30 days and then put into pots containing sterilized vermiculite, the growth conditions were the same as above. 
The seedlings with consistent growth state were selected at the two-leaf stage for inoculation; leaf samples were 
picked every 7 days after inoculation and immediately frozen in the liquid nitrogen. 

3.2 BSMV Vector construction, in-vitro transcription and inoculation 
A conserved cDNA fragment 242 bp of Tadhn1312 was amplified and used to construct the BSMV recombinant 
vector. The BSMV vectors, including α, β and γ tripartite genome, were transcribed into RNA in vitro by T7 RNA 
polymerase. Equal amount of the three RNA was inoculated into wheat leaves. Target genes were cloned into 
BSMV-γ through the NheI restriction site. TaPDS is essential in the carotenoid pigment biosynthetic pathway and 
the suppression of its activity results in photolysis of chlorophyll, also referred to as photobleaching in the 
affected tissues.  

The recombinant plasmids of BSMV:00, BSMV:TaPDS, BSMV:Tadhn1312, and BSMV-α were linearized with 
Mlu I digestion, the BSMV- β backbone was linearized via Spe I, at 37°C for 4 h. The linearizing products were 
purified and transcribed in vitro using the RiboMAX™ Large Scale RNA Production System-T7 kit (Promega, 
USA) as the manufacturer’s instructions. The RNA-α, RNA-β, and RNA-γ (or its derivative) transcripts were 
mixed in a 1:1:1 ratio, and diluted with nine volumes of DEPC water. In addition, 12 volumes of 2 × GKP buffer 
were added to the diluted transcript mixture for subsequent inoculation. Plants with consistent growth were chosen 
for virus inoculation at the two-leaf stage using 10 µL transcript mixtures per leaf. After inoculation, 
BSMV-inoculated leaves were fog-sprayed with RNase-free water and covered with plastic film for 3 days and 
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cultured in an illumination incubator (16 h light/8 h dark photoperiod at 25°C). The control plants BSMV: 00 and 
BSMV: TaPDS were used as negative control and positive control, respectively (Wang et al., 2010). 

3.3 Determination of chlorophyll content 
Chlorophyll meter SPAD-502 (Konica Minolta sensing Inc., Japan) was used to determine the chlorophyll content 
of wheat leaves. Two leaves were measured per plant. Each leaf was measured 5 to 6 times from the leaf base to 
the tip and 10 samples were randomly selected for each treatment. 

3.4 RNA extraction and reverse transcription 
Total RNA was extracted from wheat leaves using RNAiso Plus kit (TaKaRa, Dalian, China), solubilized with 
DEPC-treated ddH2O and stored at -80°C. The integrity of the RNA was assessed by 1.0% agarose gel 
electrophoresis. The first strand of cDNA was synthesized using the Prime Script™ RT reagent Kit with gDNA 
Eraser (TaKaRa, Dalian, China) as the manufacturer’s instructions. 

3.5 Quantitative Real-time PCR (qRT-PCR) 
qRT-PCR was performed using the first-strand cDNA as template using 2×SYBR○R Premix Ex TaqTM (TaKaRa, 
Dalian China). The reaction contained 10 µL of 2 × SYBR, 10 µL of Premix Ex Taq TMII, 1 µL of cDNA 
template, 2 µL of real-time PCR primers (10 µM) ( Table 1), and ddH2O supplemented to 20 µL. Reaction 
conditions were as follows: 95°C for 30 s; 95°C for 5 s and 60°C for 30 s, circulating 40 times. Fluorescence 
signals were collected during the reaction steps at 60°C; 3 repeat samples were set for each sample to correct the 
copy number of PCR templates. β-actin (GenBank accession no. AB181991) was used as internal control (Liu et 
al., 2016). The 2-ΔΔCt method used to calculate relative changes in gene expression determined from qRT-PCR 
experiments (Livak and Schmittgen, 2016). Each value is the mean±standard deviation of three independent 
biological replicates. Asterisks indicate significant differences (p<0.05). BSMV: 00 and BSMV: TaPDS were used 
as a negative control and a positive control, respectively. 

3.6 Observing the process of spike differentiation  
Spike differentiation of inoculated and control wheat plants was observed at 14 days, 21 days and 28 days after 
virus inoculation and three samples were observed for each time. The spike differentiation stage for each main 
shoot was determined using a binocular stereoscopic microscope (OLYMPUS SZX12) with magnification of 40×. 
All primers used in the study are listed in Table 1. 

Table 1 Primers for gene cloning and vector construction 

Primer name Primer sequence(5’→3’) Usage Product size 

β-actin-F TTTGAAGAGTCGGTGAAGGG internal control 176 bp 

β-actin-R TTTCATACAGCAGGCAAGCA 

TaPDS-F1 AGCGTCCAGGCACTAAA  

qRT-PCR 

251 bp 

TaPDS-R1 TAACTTTCCGCCCAACA 

Tadhn1312-F2 TCCCGAGTGACAGGTTGAGC 242 bp 

Tadhn1312-R2 TCCCAGTGCCAGTCGTTCC 

TaPDS-F2 GCTAGCAGCGTCCAGGCACTAAA Vector construction 251 bp 

TaPDS-R2 GCTAGCTAACTTTCCGCCCAACA 

Tadhn1312-F3 GCTAGCTCCCGAGTGACAGGTTGAGC 242 bp 

Tadhn1312-R3 GCTAGCTCCCAGTGCCAGTCGTTCC 

Note: the underline part in primer sequence is enzyme loci. 

3.7 Statistical analysis  
All data were subjected to analysis of variance using the SAS 9.3 program. And the significant difference among 
group means tested by using Duncan’s multiple range tests at 0.05 (p < 0.05) level. 
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