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Abstract In this article, we carried out genome resequencing and SNP mining for cultivated apples in Shandong Province for the
sake of the rapid identification of apple varieties, germplasm evaluation, and utilization. Genomic DNA was extracted immediately

from leaves of each sample, and Paired-end Illumina genomic libraries were prepared and sequenced on an Illumina Hiseq 4 000

platform following the manufacturer's instructions. Resequencing of the 31 apple genomes generated a total of 363 Gb high-quality

cleaned sequences, with an average of 12.5 Gb per accession that represented approximately 15.9x coverage of the apple genome.

The data volume fully meets the needs of downstream analysis and SNP mining. When we used the nucleotide mismatch parameter

from 1~12, the mapping rate gradually increased to saturation. There was a highly significant correlation (p<0.0001) between the

total mapping rate, mapping rate of pair-end data, and mismatch parameter. Univariate fourth-order equation (regression coefficient

r>0.99) were predicted. As the mismatch rate increases, the accuracy of mapping decreases; the genome coverage gradually increases,

and heterozygous sites' accuracy gradually increases. In this study, two algorithms were used in SNP mining. The intersection was

further taken based on the 'chromosome+site information' as the eigenvalues to obtain a highly reliable single nucleotide variant

dataset. A total of 374 404 SNP locus were detected. On average, one variation can be identified from 1 896 bp. The accuracy of the

Sanger verification test is as high as 98.1%. Annotation analysis shows that among the 373 763 SNPs, 25 047 (6.7%) are located in

the gene coding region, 143 269 (38.27%) are located in the intergenic region, and 179 426 (47.92%) are located in the 2 kb region

upstream or downstream of the corresponding genes. Among the coding region SNPs, 13 422 are non-synonymous, while 11 625 are

synonymous variations. The ratio of non-synonymous to synonymous SNP is 1.15: 1. Using the filtered 4DTV sites, population

clustering analysis results constructed using neighbor-joining algorithms are in line with the trend of the classification of cultivated

apples in Shandong province.

Keywords Cultivated apple; Genome resequencing; Development of SNP markers

Apple is one of the most important fruits in the forefront of production. Global apple yealid in 2019 exceeded

8.314×1010 kg, of which China's output was 4.139×1010 kg (data from the FAO database, http://www.fao.org/

faostat/zh/#search/apple), accounting for 50% the above. For many years, apple production of Shandong province

has been at the forefront of China (accounting for more than 25%). Simultaneously, it is also a province with

extensive apple germplasm resources, leading the country in apple germplasm resource collection, innovation, and

new varieties selection.

Genomics research is the basis of crop genetic breeding. Due to its importance, apple genome research has made

significant progress. The apple genome has been assembled and sequenced four times (Velasco et al., 2010; Li et

al., 2016; Daccord et al., 2017; Zhang et al., 2019). It is one of the fruit trees crops with the fastest progress in

whole-genome assembly. Using genome-resequencing technology, researchers have carried out population

genomics and population genetics study on the global apple germplasm resources. These studies clarified the

domestication and evolutionary mechanism of modern apples. Genomics and bioinformatics showed that the

germplasm resources tap into innovation's strong potential (Duan et al., 2017; Duan, 2017; Jia, 2018).
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Regarding the germplasm resources research, population genotyping based on resequencing provides novel

methods for protecting, identifying, evaluating, and innovating fruit tree germplasm resources. Genomics studies

provide unique advantages such as high-throughput, big data, and GWAS analysis among phenotype and genotype

(Chen et al., 2015; Chen et al., 2018). Genomics and bioinformatics studies should be combined to carry out the

high-throughput genotyping of the related germplasm resources of cultivated apples. The underlying SNP and

corresponding annotation database should be constructed together. There will be an excellent job in apple omics

(Genomic and Proteomic) breeding. In the post-genome era, SNP array represents the future direction of low-cost

genotyping due to its unique advantages. China has carried out the research, development, and application of SNP

array in field crops such as wheat, corn, soybean, rice, cotton, and some cruciferous vegetable crops. Especially in

wheat, Jia Jizeng et al. built a high-resolution (Affymetrix 660k) SNP array. These arrays have demonstrated well

in identifying and evaluating germplasm resources, population genotyping, association analysis or functional gene

mapping, and molecular marker-assisted breeding. The application prospects should not be underestimated (Zhou

et al., 2018). Compared with resequencing, the tech of chip or array is easier to perform in that no reference

genome comparison is required to achieve high throughput. Also, the chip or array has high detection accuracy of

more than 99.9%, while the detection cost is relatively as low as about 1 000 CNY per sample. Researchers have

designed three resolution of SNP array for apple breeding such as 8 K, 20 K, and 480 K, using which the

application of genotyping and association analysis for the popular cultivated apples in Europe and America have

been developed (Chagné et al., 2012; Bianco et al., 2014; Bianco et al., 2016).

In China, the fruit trees for which SNP array have been developed were strawberries, pears, and peaches; the

density is 90 K, 200 K and 9 K, respectively (Verde et al., 2012; Bassil et al., 2015; Li et al., 2019 ). As apple is an

important fruit tree, it’s breeding urgently needs targeted, low-cost, and high-throughput genotyping methods.

However, the SNP array research for the unique apple varieties in China has not been carried out yet. In this study,

based on the resequencing research that has been carried out, the SNP array site mining research was carried out.

On the one hand, it can be used for rapid identification of apple varieties, evaluation and selection of germplasm

resources; it can also be used for genome-wide association analysis, functional gene positioning and molecular

marker-assisted breeding.

1 Results
1.1 Statistics of apple genome resequencing for each accession

Upon the raw data was got, the adapter sequence and duplicated reads caused by PCR library building was

removed. The volume of cleaned data is 363 G. Calculated with 720 M base pairs of the apple genome, the highest

genome coverage was 21.02× , the lowest genome coverage was 10.63×, and the average sample coverage

reached 16.29×; it fully met the needs of re-sequencing analysis and SNP site mining (Table 1).

1.2 Effect of mismatch parameters on the mapping rate

Taking C18-06A sample Marshal (Qingdao No.1) as an example, the mismatch rate parameter mismatch required

by the BWA software is the number of allowable mismatched bases between the data read and the reference

genome, because the sequencing read length in this study is 150 bp in this study, the parameter value was

increased from 1 (0.66%) to 12 (8.00%), and a series of comparison files were obtained. Then use the flag stat

function of SAMtools to count the specific conditions of the comparison rate of all read data, paired data and

single-ended data (Table 2; Figure 1); first, as the mismatch rate gradually increases, the comparison rate also

gradually rises. High, but the upward trend gradually decreases until it is close to saturation.

The mapping rate of all reads and pair-end reads showed a trend of approaching saturation (Figure 1), while the

mapping rate of single-ended data gradually decreased to a minimum value. As is shown in Figure 1, the total

mapping rate is positively correlated with the mismatch rate, which is in line with the fourth-order equation:

y=-3E-05x4+0.0 011x3-0.0 145x2+0.0 864x+0.7 418 (regression coefficient R² = 0.9 995). The paired mapping rate

of the reading segment is positively correlated with the mismatch rate, which is in line with the fourth-order

equation: y = -3E-05x4 + 0.0 012x3-0.0 149x2 + 0.0 863x + 0.7 126 (the regression coefficient R² = 0.9 994). The

single-end mapping rate is negative correlated with the mismatch rate, which is in line with the fourth-order

equation: y = 2E-06x4-7E-05x3 + 0.0 009x2-0.0 054x + 0.0 212 (Regression coefficient is R² = 0.9 993).
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Table 1 Statistics of apple genome resequencing for each accession

Sample name Clean reads Clean bases Q20 ratio (%) GC ratio (%) Coverage

C18-01B 82 285 164 12 275 896 018 96.81 38.40 17.05

C18-02A 89 077 308 13 313 277 436 97.01 38.59 18.49

C18-03A 83 072 050 12 394 531 092 97.09 39.12 17.21

C18-04A 97 305 218 14 527 586 044 96.95 38.58 20.18

C18-05A 86 562 736 12 940 574 192 97.20 38.27 17.97

C18-06A 80 125 972 11 965 621 824 96.95 38.08 16.62

C18-07A 74 530 532 11 122 786 992 97.06 38.96 15.45

C18-08A 75 995 538 11 356 852 292 97.21 38.62 15.77

C18-09A 90 068 930 13 407 382 642 96.73 39.20 18.62

C18-10A 101 224 890 15 134 111 712 97.17 38.73 21.02

C18-11B 69 321 342 10 326 757 324 96.82 38.29 14.34

C18-12A 100 502 502 15 007 629 504 97.05 38.33 20.84

C18-13-1A 71 054 910 10 597 863 906 96.82 38.84 14.72

C18-13-2B 81 541 908 12 157 333 396 96.49 38.36 16.89

C18-14B 68 947 114 10 293 832 588 96.67 38.84 14.30

C18-15A 76 776 466 11 445 569 550 97.06 38.26 15.90

C18-16A 78 836 884 11 769 458 430 96.76 38.36 15.95

C18-17A 63 602 864 9 494 133 904 97.12 38.35 13.19

C18-18A 77 680 304 11 605 708 802 96.72 38.31 16.12

C18-19B 54 867 846 8 184 033 800 97.30 38.48 11.37

C18-20A 85 924 614 12 849 242 938 97.07 38.37 17.85

C18-21A 81 690 936 12 211 575 458 97.07 39.10 16.96

C18-22A 92 507 878 13 784 235 218 96.65 38.42 19.14

C18-23B 76 286 322 11 396 088 188 97.32 38.46 15.83

C18-24B 82 677 084 12 345 285 852 96.41 38.34 17.15

C18-25B 85 568 414 12 765 677 658 97.03 38.26 17.73

C18-26B 74 209 450 11 075 213 404 96.99 38.54 15.38

C18-27B 78 213 462 11 677 414 082 96.92 38.56 16.22

C18-28B 62 762 662 9 363 987 448 96.90 38.49 13.01

C18-29B 61 273 994 9 125 369 346 96.72 38.49 12.67

C18-30B 51 288 314 7 650 121 178 96.49 39.08 10.63

Table 2 Effect of mismatch parameters on the mapping rate

Mismatch

parameter

Total mapped

reads

Total mapped

ratio (%)

Paired mapped

reads

Paired mapped

ratio (%)

Single mapped

reads

Single mapped

ratio (%)

1 60 771 756 0.813 9 56 597 900 0.784 1 1 207 208 0.016 7

2 64 742 356 0.867 1 60 363 941 0.836 3 968 921 0.013 4

3 67 102 418 0.898 7 62 547 086 0.866 6 824 506 0.011 4

4 68 579 887 0.918 5 63 851 818 0.884 6 737 760 0.010 2

5 69 526 126 0.931 2 64 652 170 0.895 7 686 368 0.009 5

6 70 157 055 0.939 6 65 158 530 0.902 7 651 959 0.009

7 70 594 321 0.945 5 65 487 645 0.907 3 629 492 0.008 7

8 70 909 166 0.949 7 65 708 543 0.910 4 612 792 0.008 5

9 71 144 151 0.952 8 65 862 926 0.912 5 602 451 0.008 3

10 71 325 235 0.955 2 65 976 100 0.914 1 595 493 0.008 3

11 71 468 805 0.957 2 66 060 122 0.915 2 590 686 0.008 2

12 71 584 809 0.958 7 66 124 046 0.916 1 587 561 0.008 1
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Figure 1 Effect of mismatch parameters on the mapping of total data, paired data and single-ended data

1.3 Effect of mismatch parameters on accurate of heterozygous SNP calling

Next, we compared the influence of different mismatch parameters on the accuracy of locus detection. Take Chr11

on chromosome 11 as an example (Figure 2): As the allowable mismatch rate increases, in the Chr11 area in the

figure, comparable data Gradually increase, the sequencing coverage gradually increased from 11 to 19, and

homozygous loci under low coverage were identified as heterozygous loci under high coverage, indicating that the

increase in mismatch rate is beneficial to heterozygous Site detection. It can be seen that as the mismatch rate

increases, the comparison stringency decreases; the genome coverage gradually increases, which is more

conducive to the detection of heterozygous sites. Many plants have the characteristics of distant hybridization,

self-incompatibility, high genomic heterozygosity and extensive genetic drift, such as apple, Brassica, corn and

other crops. For the SNP site mining of such crops, on the one hand, it is necessary to improve the data coverage

of the whole genome by sequencing, and on the other hand, it is to select the most suitable mismatch parameter; it

is of reference significance for the SNP site mining of crops with higher heterozygosity.

Figure 2 Effect of mismatch parameters on accurate of heterozygous SNP genotyping
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1.4 Comparison and integration of sites under the two analysis procedures

According to the standard procedure of next-generation sequencing combined with the BCF tools: bwa-sam-bam-

pileup-bc fools’ algorithm, a total of 28 997 212 SNVs were identified, including 26 758 563 single-base SNPs,

and 1 060 691 short inserts. 117 795 short deletions. This algorithm can detect 3 types of variation so the

sensitivity of variation detection is as high as one variation can be identified from every 27 loci on average.

According to the standard procedure of next-generation sequencing combined with the in-house algorithm: the

bwa-sam-bam-pileup-column algorithm identified a total of 1 147 801 variation. This algorithm is designed for

the detection of single-base SNPs, whereas the sensitivity of variation detection is pretty low. On average, one

variation can be identified from every 618 loci.

Combining the obtained by the two algorithms, and further taking the intersection based on the "chromosome +

site coordinate" as the feature value, a highly reliable single-base SNP variation data set is obtained. A total of 374

404 variation were identified. Because of the intersection, these variations are all single-base SNPs. On average,

one variation can be identified from every 1 896 loci. Primers were designed for 1 000 randomly selected

homologous SNPs and amplified by PCR, and then the amplified products were sequenced by Sanger. The results

showed that the coincidence of the selected SNP sites on the two platforms was as high as 98.1%.

1.5 Distribution of SNPs among the apple genomes

Annotation analysis of SNPs showed that out of the total 373 763 SNP loci, 143 269 (38.27%) were located in the

intergenic region, 25 047 (6.7%) were located in the gene coding region, and 143 269 (38.27%) were located in

the gene coding region. Located in the intergenic region, 179 426 (47.92%) were located in the 2 kb region

upstream or downstream of the gene. Among all the SNPs in the coding region, 13 422 are non-synonymous

variations and 11 625 are synonymous variations (Table 3; Figure 3). The ratio of non-synonymous and

synonymous SNPs is 1.15: 1. Non-synonymous SNPs, also called missense SNPs, change from encoding one

amino acid to another to form a phenotypic modification; synonymous SNPs are also called silent variations,

although there are base variations, they still encode the same amino acid and cannot be formed Phenotypic

modification. Compared with other cultivated field crops and fruit tree crops, apples have a lower percentage of

variation in the genome that can form corresponding phenotypic modifications (Duan et al., 2017).

Table 3 Number of effects by type and region

Variation type Count Percent Variation region Count Percent

3‘_UTR_variant 7 906 1.09 % Downstream 174 403 24.22 %

5‘_UTR_premature_start_codon_gain 485 0.07 % Exon 25 443 3.53 %

5‘_UTR_variant 2 773 0.38 % Intergenic 276 549 38.40%

Downstream_gene_variant 174 403 24.13 % Intron 59 074 8.20%

Initiator_codon_variant 2 0 % Splice_site_acceptor 97 0.01%

Intergenic_region 276 549 38.27 % Splice_site_donor 60 0.01%

Intron_variant 61 125 8.46 % Splice_site_region 2 273 0.32%

Missense_variant 13 422 1.86 % Transcript 356 0.05%

Non_coding_transcript_exon_variant 289 0.04 % Upstream region of gene (within 5k) 170 706 23.71%

Non_coding_transcript_variant 356 0.05 % Utr_3_prime 7 906 1.10%

Splice_acceptor_variant 97 0.01 % Utr_5_prime 3 258 0.45%

Splice_donor_variant 60 0.01 % - - -

Splice_region_variant 2 541 0.35 % - - -

Start_lost 24 0.00% - - -

Stop_gained 292 0.04 % - - -

Stop_lost 20 0.00% - - -

Stop_retained_variant 19 0.00 % - - -

Synonymous_variant 11 625 1.61 % - - -

Upstream_gene_variant 170 706 23.62 % - - -
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Figure 3 Number of effects by region

1.6 Construction of population clustering evolutionary tree

The evolutionary tree was derived using the minimal evolution method (Figure 4) (Rzhetsky and Nei, 1992). The

figure shows the best evolutionary tree with a total branch length of 0.7 665, which is drawn with reference to the

ratio of evolutionary distance. On the whole, the phylogenetic tree shows that the main cultivated apples collected

in this study in Shandong Province are mainly divided into four types: Fuji, Marshal, Golden Crown (Jin Guan),

Gala, and other hybrid combinations. It is worth mentioning that: (1) C18-23 samples are wild resources that were

bred in Xinjiang wild apples, and the earliest divergence occurred in the evolutionary history; (2) C18-2, C18-3,

C18-4, C18- 5 and C18-6, according to the information provided by the resource nursery, these samples are all

marshals, and they were successfully gathered together in this experiment. Similarly, C18-8, C18-9, C18-10,

C18-11, C18-12, C18-13-1 and C18-13-2. According to the information provided by the resource nursery, these

samples are all Fuji-series. We successfully got together during the experiment. The above samples are all taken

from the National Apple Resource Nursery (Xingcheng) of the Institute of Fruit Trees, Chinese Academy of

Agricultural Sciences, which has many years of accurate genealogical data registered for these germplasm

resources. This result indirectly proves the reliability of the SNP data in this experiment; (3) The clustering results

of the remaining samples are also in line with expectations.

Figure 4 Evolutionary relationships of taxa
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2 Discussion
2.1 How to determine the ideal mismatch parameters

Through the comparative analysis of a series of mismatch parameters, this study found that with the increase in

the mismatch rate, the number of Reads that can be compared to the genome gradually increased, showing a trend

of gradual saturation. Increasing the mismatch rate to a certain level is conducive to improving sequencing

coverage and facilitating site mining. But it is meaningless to increase the mismatch rate indefinitely when it is

close to saturation.

If so, in order to further determine the best Bwa alignment mismatch parameters for different samples (Li and

Durbin, 2009), the project team members independently developed a method to select the best alignment

mismatch rate parameters: NCBI (Pruitt et al., 2005) downloaded the reference genome sequence of cultivated

apples and established a local Blast database of the apples. Then randomly select 1 000 reads from the sequencing

data for local Blast, sort the mapping ratio in the Blast results, and then calculate the Identity similarity of the 550

th read, thereby determining the BWAmismatch parameters.

The size of the best mismatch parameter measures to a certain extent the distance of the test sample relative to the

reference genome. For example, the test sample No. 23 is a new hybrid of Xinjiang wild apple (M. sieversii in

Xinjiang) and red meat apple (Malus domestica 'Redlove Era'), and the genetic relationship is far from the

reference genome apple Golden Delicious (M. domestica) The farthest, correspondingly, the mismatch parameter

obtained by our calculation is the largest, which is 7; while the reference sample No. 1 and the reference genome

belong to the Jinshuai line, the relationship is closest, and the corresponding mismatch parameter obtained by our

calculation is the smallest, which is 4.

This method of selecting the best alignment mismatch rate has been adopted in the previous article (Duan et al.,

2017; Duan, 2017). Choosing accurate mismatch parameters on the one hand can obtain a sufficiently high

sequencing coverage and ensure the accuracy of the site; on the other hand, it can compare as many reads as

possible with a minimum amount of calculation, avoiding excessive calculations and improving analysis

efficiency.

2.2 The necessity of data integration

In order to enhance the reliability of SNP loci, this study integrated the sequencing data of 31 newly collected

samples with the sequencing data of 23 cultivated apples sequenced previously (Duan et al., 2017; Duan, 2017) ),

the purpose of data integration: one is to enhance the reliability of the site, and the other is to compare the

polymorphisms between the cultivated apple populations in the province and the cultivated apple populations

abroad (a separate article is published).

Increasing the number of reference samples and data integration has the following advantages: it increases the

diversity of samples; because the previous re-sequencing involves 23 main cultivated apple types worldwide; on

the other hand, it improves the reliability of mining sites; Through the integration, the diversity of the large data

set is actually used to test the diversity of the quantum set; the future application scope of the selected site is

enhanced.

2.3 SNP calling strategies for highly heterozygous species

First, for species with high heterozygosity, the assembly of their genomes is difficult, and the corresponding

assembly quality is generally not high. For example, multiple published fruit tree genomes have high

heterozygosity. At present, next-generation sequencing is widely used. When reads with a read length of 100~150

bp are used to assemble Contigs, the overlap relationship between contigs of highly heterozygous genomes is not

easy to clarify, resulting in a low N50 and a large number of failures in the genome. The overlapping area (gap)

(Pryszcz and Gabaldón, 2016). Correspondingly, when second-generation sequencing is used for SNP detection,

the highest possible sequencing depth and as long as possible read reads are required, such as the hiseq 4 000

platform that is currently widely used. The average sequencing depth of this study reached 16 X, and the read

length was 150 bp. Based on the above strategy, the SNP loci in this paper have been sequenced by Sanger, and
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the coincidence rate is as high as 98.1%. This is higher than the accuracy of re-sequencing SNP loci in maize and

cotton populations, and these two crops have a good genetic research foundation, and their genome assembly

quality is better than that of apples.

Furthermore, when the mismatch rate is increased, more sites will be identified as heterozygous sites, which

indicates that high coverage is beneficial to the detection of heterozygous sites. Many plants have high genomic

heterozygosity due to factors such as distant hybridization, self-incompatibility, etc., and there are obvious and

extensive genetic drift, such as Malus Mill., Brassica, Maize, etc. crop. For the SNP site mining of such crops, on

the one hand, it is necessary to improve the data coverage of the sequencing in the whole genome, and on the

other hand, it is to select the most suitable mismatch parameter. This has reference significance for crops with

higher heterozygosity.

Finally, an improved algorithm should be used in site selection. Try to avoid using only one detection process. At

present, in the existing SNP detection process, the upstream analysis process is BWA combined with SAM tools,

namely BWA-Sam-bam-pileup. Different algorithms are used to select SNP after the generated pileup file, and the

file format is mainly VCF, hapmap or list format. At this time, two or more analysis processes are used to

normalize the generated data into a VCF file. By using the coordinate information of the chromosome to take the

intersection, a more reliable site can be obtained.

3 Materials and Methods
3.1 Variety collection

This study selected 31 cultivated apple varieties with a wide range of types, covering the four major apple lines

Fuji, Marshal, Golden Crown, Gala and some new hybrid lines. The pedigree and origin of the samples are from

the Institute of Fruit Research, Chinese Academy of Agricultural Sciences National Apple Resource Nursery

(Xingcheng); covers the scion types of the main cultivated apples in Shandong Province. From the point of view

of the area where the materials are obtained, the area of the materials is all over the main apple cultivation areas in

Shandong Province. From the pedigree information, the experimental materials are sufficiently representative in

terms of diversity (Table 4).

From June 15th to 20th, 2018, most of the leaves were treated with liquid nitrogen immediately after they were

collected from the raw top tip leaves of the year. Only the leaves of the 23, 25, and 26 samples were dried with

silica gel. All leaf samples were extracted according to the standard DNB extraction method. The extracted DNA

samples were tested on agarose gel for quality, and after meeting the sequencing requirements, the library was

constructed by the paired-end PE150 strategy and delivered to BGI to complete the sequencing on the Hiseq-4

000 platform.

3.2 Preprocessing and statistical analysis of sequencing data

The original data needs to go through a Perl sequencing script (written by the research team of this research group)

to remove sequencing duplication caused by PCR. Specifically, for paired Reads with different sequencing

position information IDs, any pair 1 or pair 2 with identical base data at the same time in the 15~135 bp interval is

defined as a sequencing duplication caused by PCR, and the data is filtered out. The command line is:

"drop_dup_both_end.pl raw_fq1 raw_fq2".

The data from which PCR sequencing duplicates have been removed is filtered by Trimmomatic3.0 software to

remove 1, sequencing adapters, and 2, low-quality reads. In this way, the net data is finally obtained. The

command line is "trimmomatic PE -thReads 75 fq.1 fq.2".

Including total sequencing data statistics, sequencing depth statistics, read comparison rate statistics and the

determination of comparison mismatch parameters. The command line is "fastqc -q trimmed_fq1 trimmed_fq2".
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Table 4 List of variaties in this study with habitat and pedigree information

Accession number Variety name Type of breed Location

C18-1 Golden Delicious Golden Delicious Muping, Yantai

C18-2 Starkrimson (Netherlands) Delicious short spur Jiaonan, Qingdao

C18-3 Pingyin Spur Delicious Pingyin, Jinan

C18-4 Kangtun Spu Delicious Muping, Yantai

C18-5 Xiyanghong Delicious Yantai Institute of Agricultural Sciences

C18-6 Qingdao1 Delicious Daze Mountain, Yantai

C18-7 Akifu 5 Fuji (Yuanshuai×Guoguang) Muping, Yantai

C18-8 Akifu 1 Fuji Laixi, Qingdao

C18-9 Nagafu 7 Fuji Rongcheng, Weihai

C18-10 Akifu 2 Fuji Rongcheng, Weihai

C18-11 Nagafu 2 Fuji Rongcheng, Weihai

C18-12 Yanfu 5 Fuji Muping, Yantai

C18-13-1 Changhong-1 Fuji Pingyuan, Dezhou

C18-13-2 Changhong-2 Fuji Jimo, Qingdao

C18-14 Orin Golden Delicious×Indo Jimo, Qingdao

C18-15 Indo White Winter Pearmain × ? Jimo, Qingdao

C18-16 Geneva Early Quinte×Julyred Qixia, Yantai

C18-17 Fujiki 1 (Nanbusakigake) Uknown Linyi, Shandong

C18-18 RallsJanet Uknown Linyi, Shandong

C18-19 Shinsekai Fuji×akagi Linyi, Shandong

C18-20 Sansa Gala×Akane Tai'an, Shandong

C18-21 Jonagold Golden Delicious×Jonathan Tai'an, Shandong

C18-22 Wangshi Fuji Tai'an, Shandong

C18-23 Violetred No.1 Uknown Tai'an, Shandong

C18-24 Taishan early Uknown Tai'an, Shandong

C18-25 RallsJanet Uknown Tai'an, Shandong

C18-26 Red General Fuji Fuji Liaocheng, Shandong

C18-27 Jonathan Esopus Spitzenburg Linyi, Shandong

C18-28 Royal Gala Kidd's Orange Red×Golden Delicious Linyi, Shandong

C18-29 Meiguo 8 NY543 Linyi, Shandong

C18-30 Pink Lady Golden Delicious Tai'an, Shandong

3.3 Determine of mismatch values

Take the sample C18-06A (Qingdao 1, Golden delicious) as an example, for the mismatch rate parameter

mismatch required by the BWA software: the value of allowable mismatched bases between the data read and the

reference genome, because apples have distant hybridization and heterozygosity Higher, therefore, increase the

parameter value from 0.66% to 8.00%, which corresponds to a read length of 150 bp and is 1~12. A series of

comparison files were obtained to compare the comparison rate to coverage and SNP detection.

In order to determine the appropriate BWA (Li and Durbin, 2009) alignment mismatch parameters, firstly

download the reference genome sequence of cultivated apple from NCBI (www.ncbi.genome.com) and establish a

local Blast database of this species. Randomly extract 1 000 reads from the sequencing data for local Blast, and

then count the similarity of the 550th read after sorting the Mapping ratio to determine the mismatch value of

BWA.

3.4 Data mapping and SNPmining

In this study, the genome of the cultivated apple 'Jinshuai' published in 2017 (Daccord et al., 2017) was used as

the reference sequence, and all the 31 collected in this experiment and the 23 cultivated in the previous article

(Duan et al., 2017) were used. For apples, the resequencing data of a total of 54 cultivated apples were compared

with the reference genome by BWA (Li and Durbin, 2009) (mismatch ranging from 4 to 7). The pileup file is

converted by SAM tools (Li et al., 2009). Next, two different processes are used to detect SNP site information: (1)
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BWA-sam-bam-pileup-bc fools’ algorithm, using SAM tools combined with BCF tools to convert Pileup files to

obtain SNP data sets in VCF file format for each sample. (2) According to the second-generation sequencing

standard process combined with the self-developed In-House algorithm, namely: the bwa-sam-bam-pileup-column

algorithm, a SNP data set similar to hapmap is obtained. (3) Using an improved intersection algorithm: the SNP

site information obtained by the above two methods is based on the method of taking the intersection of

chromosome coordinates, and then to a higher quality SNP site.

SNP validation method: 6 samples were selected, and 1,000 homogenous SNP sites (that is, non-heterozygous)

were randomly intercepted from chromosome 11, and 50 bp sequences on both 3’ and 5’ flank were designed

based on this. Then primers were constructed, and PCR amplification experiments were performed. Finally, the

amplified products were testified by 3730 capillary electrophoresis.

3.5 Annotation of SNP loci

Compared with other annotation software, SNPEff is powerful. It can get the gene region where the variation site

anchor and the detailed gene region information conducive to subsequent functional gene mining and mapping.

Due to the use of the java platform, it is to learn and use. The manual http://SNPeff.sourceforge.net/

SNPEff_manual.html describes the annotation method in detail. The command line for the annotation in this study

is as follows:

To modify SNPeff software settings: "vim user path/SNPEff/SNPeff-4.3.1t-1/SNPEff.config"; To add genome

information: "# apple genome version GDDH13 GDDH13.genome: Apple"; To build local library: "SNPEff build

-gff3 -v GDDH13"; SNP annotation: "SNPEff -v -stats prefix.html GDDH13 prefix.vcf> prefix.ann"; the output

html file is a graphical interpretation of the site annotation results presented in the form of a web page, and the

output an file is a text listing the detailed results of each SNP annotation.

3.6 4DTV loci filtering and cluster analysis

In the protein coding region of the gene, there are some amino acids corresponding to the third codon that can use

any 4 kinds of bases, and no amino acid changes will be formed. Such a site is called a quadruple degeneration

site (4DTV). This kind of unintentional variation has almost no selective pressure, and its variation rate can be

used as a "clock" to estimate evolution, which is particularly suitable for building evolutionary trees and analyzing

population genetic structure (Fazio et al., 2014). This study used the Perl script written by the team to screen the

entire set of SNP data in the CDS region according to the following rules: minimum allele frequency (MAF) ≥

5%, and the data loss rate corresponding to each locus≤10%. Finally, 24 326 quadruple degenerate sites (4DTV)

were screened. Finally, the location is input into the Mega X software, and the close-neighbor-interchange (CNI)

algorithm (Kumar et al., 2018) is used on the first search level. Thus, the phylogenetic tree of the population is

constructed.
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