

Research Article

Open Access

Genetic Diversity and Population Structure of Chinese Jujube (*Ziziphus jujuba* Mill.) and Sour Jujube (*Ziziphus acidojujuba* Mill.) using Inter-simple Sequence Repeat (ISSR) Markers

Shipeng Li*, Mingxin Guo*, Shan Tian, Hongxia Liu, Xusheng Zhao College of Life Science, Luoyang Normal University, Luoyang, Henan, China
* These authors contributed equally to this work
Corresponding author email: <u>xushengzhao2018@163.com</u>
Molecular Plant Breeding, 2021, Vol.12, No.14 doi: <u>10.5376/mpb.2021.12.0014</u>
Received: 14 Mar., 2021

Accepted: 06 May, 2021

Published: 20 May, 2021

Copyright © 2021 Li et al., This is an open access article published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Preferred citation for this article:

Li S.P., Guo M.X., Tian S., Liu H.X., and Zhao X.S., 2021, Genetic diversity and population structure of Chinese jujube (*Ziziphus jujuba* Mill.) and sour jujube (*Ziziphus acidojujuba* Mill.) using inter-simple sequence repeat (ISSR) markers, Molecular Plant Breeding, 12(14): 1-21 (doi: <u>10.5376/mpb.2021.12.0014</u>)

Abstract The Chinese jujube (*Ziziphus jujuba* Mill.) originates from sour jujube (*Ziziphus acidojujuba* Mill.) and is an economically important genus in the Rhamnaceae family. However, little is known about the genetic relationship between jujube cultivars and wild species. In this study, we estimated the genetic variation and relationships between 85 jujube cultivars and 55 sour jujube individuals by ISSR markers. Of 216 ISSR primers, 110 were able produce amplified product(s) and 28 showed polymorphisms, accounting for 50.9% and 25.5% of total primers respectively. A total of 89 amplicons were amplified with 28 primers, of which 42 amplicons (47.2%) were polymorphic, and most of primers exhibited high PIC values. Cluster analysis and population structure analysis roughly divided the 140 accessions into two major groups. One group included all jujube cultivars and some sour jujube individuals, and the other group included remaining sour jujube individuals. Most jujube cultivars have a weak correlation with their origin, and there are obvious gene exchanges between sour jujube and jujube cultivars. The results provide a useful basis for jujube germplasm conservation, genetic improvement and evolution research.

Keywords Ziziphus jujuba Mill; Ziziphus acidojujuba Mill; ISSR; Genetic diversity; Population structure

Background

Chinese jujube (*Ziziphus jujuba* Mill.) and sour jujube (*Ziziphus acidojujuba* Mill.) belong to the family Rhamnaceae. Chinese jujube (hereafter referred to as jujube) is an economically and ecologically important species that is a popular fruit tree in Asia (Qu and Wang, 1993). According to archaeological evidence, jujube, which has been cultivated for more than 3,000 years, originated in China (Qu and Wang, 1993; Liu, 2003; Liu and Wang, 2009; Li et al., 2013). As one of the oldest cultivated fruit trees, the germplasm resources of jujube are abundant, with more than 900 cultivars reported thus far (Liu and Wang, 2009). Jujube fruits have high nutritional value and a long history of usage as an edible fruit and in herbal medicine, and constitute a rich source of vitamin C, cAMP, flavonoids, triterpenic acids, and polysaccharides (Gao et al., 2013). Recent phytochemical and pharmacological studies have revealed that the main biologically active components of jujube fruits are beneficial to the human health (Choi et al., 2012; Chen et al., 2017a). Sour jujube, also known as wild jujube, is another important species that is regarded as the wild ancestor of jujube (Qu and Wang, 1993; Liu, 2003; Liu and Wang, 2009). It is widely planted as the rootstock for jujube and its seeds have high medicinal value (Qu and Wang, 1993; Islam and Simmons, 2006; Liu and Wang, 2009; Zhang et al., 2015a). Research on the genetic diversity and phylogenetic relationships of jujube is beneficial for jujube breeding and will help to elucidate the evolutionary history of jujube.

With the development of molecular biology and technology, the genetic diversity and genetic structure of jujube have been studied using molecular markers, including amplified fragment length polymorphism (AFLP), chloroplast microsatellite (cpSSR), random amplified polymorphic DNA (RAPD), sequence-related amplified polymorphisms(SRAPs), simple sequence repeat (SSR), single nucleotide polymorphism (SNP), and so on (Peng et al., 2000; Bai, 2008; Ma et al., 2011; Soliman et al., 2013; Li et al., 2014; Wang et al., 2014; Xie, 2014; Huang et al., 2015; Xiao et al., 2015; Zhang et al., 2015c; Fu et al., 2016; Xu et al., 2016; Chen et al., 2017b). For

example, 30 main cultivars were divided into six groups based on AFLP analysis (Xie, 2014). The genetic diversity of 76 jujube cultivars was analyzed using 31 SSR markers, and the cultivars were divided into three main groups based on cluster analysis (Wang et al., 2014). One hundred and forty accessions were clustered into two groups by STRUCTURE Software 2.3.4 (http://web.stanford.edu/group/pritchardlab/structure.html) and principal coordinate analyses (PCoA, https://www.xlstat.com/en/solutions/features/principal-coordinate-analysis) based on SNPs (Chen et al., 2017b). However, only a few studies involving the genetic diversity and genetic structure of sour jujube and the genetic relationship between jujube and sour jujube have been reported (Huang et al., 2015; Zhang et al., 2015a).

The inter simple sequence repeat (ISSR) technique is a polymerase chain reaction (PCR)-based method that involves the amplification of regions between adjacent, inversely oriented microsatellites using single sequence repeats, usually 16-25 bp long, as primers (Zietkiewicz et al., 1994). It is a rapid, simple, and inexpensive way to study genetic diversity, phylogeny, and evolutionary biology (Reddy et al., 2002). The jujube genome contains high-density simple sequence repeats (Liu et al., 2014); therefore, it is suitable for genetic diversity analysis using ISSR markers. In the present study, the genetic diversity and population structure of 85 jujube cultivars and 55 sour jujube individuals were analyzed by ISSR markers. The results revealed the level of genetic diversity in the collections and the genetic relationships between jujube and sour jujube.

1 Results

1.1 Detection of polymorphisms

All 216 of the ISSR primers were evaluated for successful PCR amplification by testing three accessions. Among them, 110 primers (50.9%) successfully amplified at least one clear and stable fragment from the jujube and sour jujube genome. To test the polymorphism of the 110 ISSR primers, 12 jujube cultivars and 12 sour jujube individuals were further analyzed. Of the 110 ISSR primers, 28 primers (25.5%) were polymorphic (Figure 1) and produced a total of 89 DNA fragments (Table 1). The number of amplified fragments varied from 2 to 6 with an average of 3.19 amplicons per primer, and their sizes ranged between 200 and 1,500 bp (Table 1). The polymorphism per primer ranged from 16.7 (ISSR60) to 100% (ISSR-11 and ISSR-13) and the average number of polymorphic bands per primer was 1.5 (Table 1). Based on genetic variation standards (Botstein et al., 1980), the polymorphism information content (PIC) values calculated ranged from 0.168 to 0.777, and most of the primers exhibited high PIC values (Table 1). Thus, our results indicated that ISSR markers could be used to assess the genetic diversity and population structure in these germplasms.

Figure 1 Amplification products from 12 jujube cultivars and 12 sour jujube individuals using the ISSR-25 primer. M: D2000 plus DNA Ladder (Solarbio, Beijing, China)

Table 1 The 28 ISSR	nrimers sel	ected for thi	e etudy
14010 1 1110 20 ISSN	primers sere		is study

Primer name	Primer	Annealing	Allele range	Total no. of	No. of polymorphic	PIC
		temperature (°C)	(bp)	bands	bands	
ISSR11	GAGAGAGAGAGAGAGAGAC	50	550-600	2	2	0.684
ISSR13	CTCTCTCTCTCTCTCTT	50	700-800	2	2	0.507
ISSR22	TCTCTCTCTCTCTCA	50	700-900	2	1	0.396
ISSR23	TCTCTCTCTCTCTCTCC	50	600-1,000	3	1	0.436
ISSR25	ACACACACACACACACT	50	650-950	5	3	0.771
ISSR27	ACACACACACACACACG	50	450-950	3	2	0.722
ISSR40	AGAGAGAGAGAGAGAGAGTT	55	500-750	2	1	0.382
ISSR43	AGAGAGAGAGAGAGAGAGTC	55	350-600	5	3	0.777
ISSR46	AGAGAGAGAGAGAGAGAGAGA	55	400-750	3	2	0.693
ISSR47	AGAGAGAGAGAGAGAGAGAGA	55	550-1,500	4	2	0.678
ISSR48	AGAGAGAGAGAGAGAGAGAGA	55	350-1,500	3	1	0.426
ISSR55	GAGAGAGAGAGAGAGAGATT	55	200-400	2	2	0.639
SSR57	GAGAGAGAGAGAGAGAGACT	55	200-350	2	1	0.311
SSR60	GAGAGAGAGAGAGAGAGACC	55	200-500	6	1	0.235
ISSR63	GAGAGAGAGAGAGAGAGACG	55	250-600	4	1	0.414
ISSR66	CTCTCTCTCTCTCTCTAC	55	550-700	2	2	0.64
ISSR68	CTCTCTCTCTCTCTCTAG	55	600-1,500	2	1	0.414
ISSR69	CTCTCTCTCTCTCTCGG	55	250-500	5	1	0.235
ISSR81	GTGTGTGTGTGTGTGTCC	55	200-1,500	5	1	0.467
ISSR82	GTGTGTGTGTGTGTGTGTG	55	300-1,000	3	1	0.275
ISSR88	TCTCTCTCTCTCTCTCGT	55	300-1,000	3	1	0.168
ISSR89	TCTCTCTCTCTCTCTCAG	55	300-700	6	2	0.629
ISSR95	ACACACACACACACACGA	55	600-1,500	2	1	0.402
ISSR103	TGTGTGTGTGTGTGTGGC	55	400-500	2	1	0.488
SSR105	TGTGTGTGTGTGTGTGGA	55	400-700	2	1	0.496
SSR121	GATAGATAGACAGACA	50	350-750	3	2	0.733
SSR124	CTTCACTTCACTTCA	50	400-750	3	2	0.628
ISSR126	GGGTGGGGTGGGGTG	55	550-700	3	1	0.467
Total				89	42	
Average				3.19	1.5	0.504

1.2 Genetic diversity and cluster analysis

To examine the genetic diversity of 140 accessions in detail, we calculated their genetic relationships using Unweighted Pair Group Method and Arithmetic Mean (UPGMA) cluster analysis. Based on the unweighted neighbor-joining clustering, 140 accessions were divided into two major groups (Figure 2).

Group I (G1) contained all of the jujube cultivars and seven sour individuals, and could be further divided into four subgroups. The subgroups under I (G1-I), III (G1-III), and IV (G1-IV) included three jujube cultivars and two sour jujube individuals; two jujube cultivars and one sour jujube individual; and one jujube cultivars and two sour jujube individuals, respectively. Subgroup II (G1-II) included the vast majority of the jujube cultivars and one sour jujube individual, and could be further divided into three clusters. The 41 cultivars in cluster I (C1) mainly originated from northwest China; the 18 cultivars in cluster II (C2) mainly originated from eastern China; and the 14 cultivars in cluster III (C3) mainly originated from central China. Group II (G2) contained the other sour jujube individuals, and could be further divided into four subgroups. These four subgroups (G2-I-IV) included 27, 16, 4, and 1 individual, respectively. The Mantel test showed a weak correlation between genetic divergence and geographical distance (r^2 =0.0554, p>0.05). The results showed that the genetic relationships among the different jujube varieties were no significant correlation with the origin of the variety (Figure 2; Table 2).

Figure 2 Dendrogram of 140 accessions based on 28 ISSR primers

Code	Accession	Species	Usage
J01	Beijingjidanzao	Ziziphus jujuba Mill.	Fresh variety
J02	Buluosu	Ziziphus jujuba Mill.	Fresh variety
03	Dabailing	Ziziphus jujuba Mill.	Fresh variety
04	Dabaizao	Ziziphus jujuba Mill.	Fresh variety
05	Daguazao	Ziziphus jujuba Mill.	Fresh variety
106	Dongzao	Ziziphus jujuba Mill.	Fresh variety
107	Fengmiguan	Ziziphus jujuba Mill.	Fresh variety
J08	Hunanjidanzao	Ziziphus jujuba Mill.	Fresh variety
109	Jinai NO.3	Ziziphus jujuba Mill.	Fresh variety
10	Lajiaozao	Ziziphus jujuba Mill.	Fresh variety
11	Lengbaiyu	Ziziphus jujuba Mill.	Fresh variety
12	Linqilizao	Ziziphus jujuba Mill.	Fresh variety
13	Pinglujianzao	Ziziphus jujuba Mill.	Fresh variety
14	Qiyuexian	Ziziphus jujuba Mill.	Fresh variety
115	Taigujixinmi	Ziziphus jujuba Mill.	Fresh variety
16	Taianmalingcui	Ziziphus jujuba Mill.	Fresh variety
17	Xiajingmamazao	Ziziphus jujuba Mill.	Fresh variety
18	Xiangfenyuanzao	Ziziphus jujuba Mill.	Fresh variety
			-
19	Xuechengdongzao	Ziziphus jujuba Mill.	Fresh variety
20	Yingluozao	Ziziphus jujuba Mill.	Fresh variety
21	Yongjihamazao	Ziziphus jujuba Mill.	Fresh variety
22	Yuciyazao	Ziziphus jujuba Mill.	Fresh variety
123	Zaoqiangcuizao	Ziziphus jujuba Mill.	Fresh variety
124	Jiaochengtiansuanzao	Ziziphus jujuba Mill.	Fresh variety
25	Chuanlingzao	Ziziphus jujuba Mill.	Dry variety
26	Guantanzao	Ziziphus jujuba Mill.	Dry variety
27	Hongzhaoshiyuehong	Ziziphus jujuba Mill.	Dry variety
28	Jishanliuguanzao	Ziziphus jujuba Mill.	Dry variety
29	Jishanyuanzao	Ziziphus jujuba Mill.	Dry variety
30	Jishanchangzao	Ziziphus jujuba Mill.	Dry variety
31	Jingudazao	Ziziphus jujuba Mill.	Dry variety
32	Jinzandazao	Ziziphus jujuba Mill.	Dry variety
133	Miyunxiaozao	Ziziphus jujuba Mill.	Dry variety
134	Paopaohong	Ziziphus jujuba Mill.	Dry variety
35	Pingshunbenzao	Ziziphus jujuba Mill.	Dry variety
36	Pingyaodazao	Ziziphus jujuba Mill.	Dry variety
37	Pingyaokuduanzao	Ziziphus jujuba Mill.	Dry variety
138	Popozao	Ziziphus jujuba Mill.	Dry variety
39	Pozao	Ziziphus jujuba Mill.	Dry variety
40	Pozaozhibian NO.1	Ziziphus jujuba Mill.	Dry variety
141	Shenglizao	Ziziphus jujuba Mill.	Dry variety
142	Taiguhupingzao	Ziziphus jujuba Mill.	Dry variety
143	Xiaxianziyuanzao	Ziziphus jujuba Mill.	Dry variety
J44	Xianxianmuzao	Ziziphus jujuba Mill.	Dry variety
J45	Xiangfenmuzao	Ziziphus jujuba Mill.	Dry variety
146	Xiangfenyazao	Ziziphus jujuba Mill.	Dry variety

Table 2 Accessions used in the study

Continuing Table 2

Code	Accession	Origin	Species	Usage
J47	Yuanquzao	Shanxi	Ziziphus jujuba Mill.	Dry variety
J48	Yuanlingzao	Shandong	Ziziphus jujuba Mill.	Dry variety
J49	Banzao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J50	Baodexiaozao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J51	Cangxiantunzizao	Hebei	Ziziphus jujuba Mill.	Dual-purpose variety
J52	Cangxianxiaozao	Hebei	Ziziphus jujuba Mill.	Dual-purpose variety
J53	Dingxiangxingxingzao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J54	Hongzhaoxiaozao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J55	Hupingzao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J56	Jiaochengduanzao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J57	Jinzao	Shaanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J58	Junzao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J59	Lichengdamazao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J60	Lichengxiaozao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J61	Linfentuanzao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J62	Linfenzhenhulu	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J63	Ningxiatongxinyuanzao	Ningxia	Ziziphus jujuba Mill.	Dual-purpose variety
J64	Qingxuyuanzao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J65	Shandongshouzao	Shandong	Ziziphus jujuba Mill.	Dual-purpose variety
J66	Taiguduanzizao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J67	Taigudundunzao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J68	Taiguheiyezao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J69	Xiaxianyuancuizao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J70	Yucituanzao	Shanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J71	Zanhuangdazao	Hebei	Ziziphus jujuba Mill.	Dual-purpose variety
J72	Zanhuangchangzao	Hebei	Ziziphus jujuba Mill.	Dual-purpose variety
J73	Zhongyangmuzao	Shaanxi	Ziziphus jujuba Mill.	Dual-purpose variety
J74	Ezizao	Zhejiang	Ziziphus jujuba Mill.	Sugar treament variety
J75	Jinsizao	Ningxia	Ziziphus jujuba Mill.	Sugar treament variety
J76	Nanjingzao	Jiangsu	Ziziphus jujuba Mill.	Sugar treament variety
J77	Xuanchengjianzao	Anhui	Ziziphus jujuba Mill.	Sugar treament variety
J78	Daguosuanpanzao	Hunan	Ziziphus jujuba Mill.	Ornamental variety
J79	Dalilongzao	Shaanxi	Ziziphus jujuba Mill.	Ornamental variety
J80	Dashibingzao	Shandong	Ziziphus jujuba Mill.	Ornamental variety
J81	Dayewuhezao	Henan	Ziziphus jujuba Mill.	Ornamental variety
J82	Longzao	Henan	Ziziphus jujuba Mill.	Ornamental variety
J83	Mupanzao	Shaanxi	Ziziphus jujuba Mill.	Ornamental variety
J84	Tailihong	Henan	Ziziphus jujuba Mill.	Ornamental variety
J85	Taiguhuluzao	Shanxi	Ziziphus jujuba Mill.	Ornamental variety
S01	W01	Hebei	Ziziphus acidojujuba Mill.	-
S02	W02	Hebei	Ziziphus acidojujuba Mill.	_
S02	W02 W03	Hebei	Ziziphus acidojujuba Mill.	_
S05 S04	W04	Hebei	Ziziphus acidojujuba Mill.	_
S04	W05	Hebei	Ziziphus acidojujuba Mill.	_
S05 S06	W06	Hebei	Ziziphus acidojujuba Mill.	_
S00 S07	W07	Hebei	Ziziphus acidojujuba Mill.	_
S07	W08	Hebei	Ziziphus acidojujuba Mill.	_
500	** 00	110001		-

Code S09 S10 S11 S12 S13 S14 S15 S16 S17 S18 S19 S20 S21 S22 S23 S24 S25 S26 S27 S28 S29 S30 S31 S32 S33 S34 S35 S36 S37 S38 S39 S40 S41 S42 S43 S44 S45 S46 S47 S48 S49 S50 S51 S52 S53

S54

S55

W54

W55

Molecular Plant Breeding 2021, Vol.12, No.14, 1-21 http://genbreedpublisher.com/index.php/mpb

			Continuing Table 2
Accession	Origin	Species	Usage
W09	Hebei	Ziziphus acidojujuba Mill.	-
W10	Hebei	Ziziphus acidojujuba Mill.	-
W11	Hebei	Ziziphus acidojujuba Mill.	-
W12	Hebei	Ziziphus acidojujuba Mill.	-
W13	Hebei	Ziziphus acidojujuba Mill.	-
W14	Hebei	Ziziphus acidojujuba Mill.	-
W15	Hebei	Ziziphus acidojujuba Mill.	-
W16	Hebei	Ziziphus acidojujuba Mill.	-
W17	Hebei	Ziziphus acidojujuba Mill.	-
W18	Hebei	Ziziphus acidojujuba Mill.	-
W19	Hebei	Ziziphus acidojujuba Mill.	-
W20	Hebei	Ziziphus acidojujuba Mill.	-
W21	Hebei	Ziziphus acidojujuba Mill.	-
W22	Hebei	Ziziphus acidojujuba Mill.	-
W23	Hebei	Ziziphus acidojujuba Mill.	-
W24	Hebei	Ziziphus acidojujuba Mill.	-
W25	Hebei	Ziziphus acidojujuba Mill.	-
W26	Hebei	Ziziphus acidojujuba Mill.	-
W27	Hebei	Ziziphus acidojujuba Mill.	-
W28	Hebei	Ziziphus acidojujuba Mill.	-
W29	Hebei	Ziziphus acidojujuba Mill.	-
W30	Henan	Ziziphus acidojujuba Mill.	-
W31	Henan	Ziziphus acidojujuba Mill.	-
W32	Henan	Ziziphus acidojujuba Mill.	-
W33	Henan	Ziziphus acidojujuba Mill.	-
W34	Henan	Ziziphus acidojujuba Mill.	-
W35	Henan	Ziziphus acidojujuba Mill.	-
W36	Henan	Ziziphus acidojujuba Mill.	-
W37	Henan	Ziziphus acidojujuba Mill.	-
W38	Henan	Ziziphus acidojujuba Mill.	-
W39	Henan	Ziziphus acidojujuba Mill.	-
W40	Henan	Ziziphus acidojujuba Mill.	-
W41	Henan	Ziziphus acidojujuba Mill.	-
W42	Henan	Ziziphus acidojujuba Mill.	-
W43	Henan	Ziziphus acidojujuba Mill.	-
W44	Henan	Ziziphus acidojujuba Mill.	-
W45	Henan	Ziziphus acidojujuba Mill.	-
W46	Henan	Ziziphus acidojujuba Mill.	-
W47	Henan	Ziziphus acidojujuba Mill.	-
W48	Henan	Ziziphus acidojujuba Mill.	-
W49	Henan	Ziziphus acidojujuba Mill.	-
W50	Henan	Ziziphus acidojujuba Mill.	-
W51	Henan	Ziziphus acidojujuba Mill.	-
W52	Henan	Ziziphus acidojujuba Mill.	-
W53	Henan	Ziziphus acidojujuba Mill.	-
11.55	TT		_

Ziziphus acidojujuba Mill.

Ziziphus acidojujuba Mill.

-

-

Henan

Henan

1.3 Population structure

STRUCTURE 2.3.4 (Hubisz et al., 2009) was used to analyze the population structure of jujube and sour jujube accessions. The mean LnP(K) values for the different Ks ranged from 1 to 25, and exhibited a rapid incremental trend before reaching a peak value at K = 2. After K = 2, the mean LnP(K) values gradually increased to K = 25, but variation was observed among the replicate runs. Furthermore, our results showed that the highest value of ΔK was observed for K = 2, hence all of the accessions could be roughly divided into two major clusters (Figure 3). Using a membership probability threshold of 0.6 (Jakobsson and Rosenberg, 2007; Chen et al., 2012), 94 accessions were assigned to group I, which contained 85 jujube cultivars and 9 sour jujube individuals. The remaining 46 sour jujube individuals were assigned to group II (Figure 4; Table 3).

Figure 3 STRUCTURE estimation of the munber of populations for K values ranging from 1 to 25, by delta K (Δ K) values

Figure 4 Population structure (K=2) of 140 accessions

Table 3 Distribution of Q-value of 140 accessions in two groups by model-based cluster method

Group	Number of cultivars in each group	Amount of accessions (%)			
		Q<0.6	Q≥0.6	Q≥0.8	Q≥0.9
Ι	94	4 (4.3%)	90 (95.7%)	71 (75.5%)	55 (58.5%)
II	46	4 (8.7%)	42 (91.3%)	37 (80.4%)	28 (60.8%)
Total	140	8 (5.7%)	132 (94.3%)	108 (77.1%)	83 (59.3%)

Statistical analysis indicated that the majority of accessions showed strong membership values (Table 4). In group I, 71 accessions (75.5%), including 68 jujube cultivars and three sour jujube individuals, demonstrated shared ancestry. Similarly, 37 individuals (80.4%) had a high proportion of membership in group II. The other accessions showed mixed ancestry from both groups.

Table 4 Summary of ge	netic varia	tion statistics	for 28 ISSI	R markers f	from 85 jujul	be cultivar	s and 55 sour jujube individuals
Dopulation	N	No	Ne	Т	На	uЦe	The percentage of polymorphic loci

Population		Ν	Na	Ne	Ι	He	uHe	The percentage of polymorphic loci
Jujube	Mean	85.000	1.810	1.548	0.473	0.317	0.319	88.10%
	SE	0.000	0.085	0.054	0.035	0.026	0.026	
Sour Jujube	Mean	55.000	1.881	1.578	0.492	0.332	0.335	90.48%
	SE	0.000	0.061	0.053	0.033	0.025	0.026	

PCoA also roughly divided the 140 accessions into two clusters (Figure 5), which was consistent with the assignments generated by UPGMA clustering (Figure 2) and population structure analysis (Figure 4). The majority of sour jujube accessions belonging to cluster I were distributed in the left half of the resulting plot. The rest of the sour jujube and all of the jujube accessions belonging to cluster II were distributed in the right of the plot. The distribution of cluster I was more widely scattered than cluster II, indicating that sour jujube had higher diversity than the jujube cultivars.

Principal Coordinates (PCoA)

Figure 5 The principal coordinate analysis (PCA) of 140 accessions using ISSR primers

2 Discussion

ISSR marker is a simple and rapid approach that has the advantages of SSR, RAPD, RFLP and AFLP (Reddy et al., 2002). Compared with SSR marker and sequencing technology, it is low cost and does not require prior knowledge of sequence information. ISSR marker has been widely used in the fields of germplasm collection, genetic diversity, genetic mapping and marker assisted selection (Levi et al., 2006; Zhang et al., 2011; Sunar et al., 2016; Cui et al., 2017; Kumar and Roy, 2018). Few studies have focused on elucidating the complex genetic relationships among different jujube varieties by ISSR markers (Singh et al., 2017). In the present study, the genetic diversity of a wide variety of jujube germplasm resources was evaluated, which provides an important scientific basis for the efficient use of these germplasms.

Twenty-eight ISSR markers were used in this study to analyze the genetic diversity of 85 jujube and 55 sour jujube accessions. The results showed that the Shannon's Information Index (I: 0.492) and marker diversity (90.48%) of sour jujube were both higher than in jujube (Table 5). One probable explanation is that the genetic diversity of the jujube varieties has been reduced as a result of long-term evolution and artificial domestication.

Molecular Plant Breeding 2021, Vol.12, No.14, 1-21 http://genbreedpublisher.com/index.php/mpb

Population	Number of cultivars in each population	Amount of accessions (%)					
		Q<0.6	Q≥0.6	Q≥0.8	Q≥0.9		
Jujube	85	4 (4.7%)	81 (95.3%)	68 (80.0%)	53 (62.4%)		
Sour Jujube	55	13 (23.6%)	42 (76.4%)	37 (67.3%)	28 (50.9%)		
Total	140	17 (12.1%)	123 (87.9%)	105 (75.0%)	81 (57.9%)		

Table 5 Distribution of Q-value of 85 jujube cultivars and 55 sour jujube individuals by model-based cluster metho				
	Table 5 Distribution of ()-value of 85 jujube cultivars	and 55 sour jujube individuals b	v model-based cluster method

Morphological, biological, and cytological evidence indicates that sour jujube is a wild species of jujube and that jujube is derived from sour jujube. Zhang et al. (2015b) used seven SSR makers to classify 17 sour jujubes and 16 jujube varieties into wild, semi-wild, and cultivar species, with frequent genetic exchanges observed among the three groups. Huang et al. (2015) used chloroplast microsatellite (cpSSR) markers to analyze jujube, sour jujube, and Indian jujube. The results also showed that a genetic exchange existed between sour jujube and jujube. In this study, the cluster analysis showed that jujube and sour jujube were obviously divided into two group, but some of the sour jujube individuals had a closer genetic relationship with the jujube cultivars. Therefore, we divided the 140 samples into wild, semi-wild, and cultivar species (Figure 2). Population structure analysis showed that there was gene flow between the sour jujube and jujube varieties (Figure 4). Our results validated previous research results and provided molecular biological evidence for the cultivation of jujube from sour jujube.

Previous studies have shown that the genetic relationships between different jujube varieties correlate, to an extent, with the origin of the variety (Liu et al., 2016). The genetic variation of jujube mainly emanates from intra-population variation, and the contribution rate from among-population variation is low. Among the 85 jujube varieties used in this study, four accessions with a Q-value of less than 0.6 accounted for only 4.7%, and most of the species had a single kinship ($Q \ge 0.8$), which indicated that the majority of the varieties are dominated by intra-population or intra-geographic variation (Table 6). The above results indicate that the existing germplasm resources of jujube may originate from different regions. Frequent gene exchange and recombination have occurred among the intraspecific cultivars during the evolution of the species, resulting in a more varied population structure composition.

Genome sequencing showed that the jujube genome contains a very high density of SSRs. The SSR repeats exhibited a strong bias toward A/T, AT/TA, and AAT/ATT motifs, whereas C/G and CG/CG motifs were present at very low levels (Xiao et al., 2015; Fu et al., 2016). Interestingly, the analysis of SSR and ISSR markers showed that AG/GA, CT/TC, and AC/CA repeat motifs had high amplification efficiency, while A/T, AT/TA, and AAT/ATT repeat motifs had low amplification efficiency. The SSRs in our study included 10 AG/GA-, eight CT/TC-, four GT/TG-, and three AC-type primers, which respectively corresponded to 35.7%, 28.6%, 14.3%, and 10.7% of the total SSRs (Table 1). The above results indicate that the simple sequence repeats in the jujube genome are dominated by A/T, AT/TA, and AAT/ATT repeat motifs, but the polymorphic sites are mainly AG/GA, CT/TC, and AC/CA repeat motifs. Therefore, using AG/GA, CT/TC, and AC/CA repeats in primer design could greatly improve primer screening efficiency. This should inform future genetic diversity analyses and the molecular breeding of jujube.

3 Conclusions

In this study, 42 polymorphic alleles were revealed with 28 ISSR primers, each primer amplified polymorphic loci ranged from 1 to 3, with an average of 1.5 for each primer pairs. PIC values for the primer pairs ranged from 0.168 to 0.777. By comprehensive analysis of the genetic diversity and population structure, jujube and sour jujube accessions were roughly divided into two subgroups and most jujube cultivars have a weak correlation with their origin. These results will provide reliable and efficient genetic information for the study of jujube genetic relationship and new variety selection.

Primer name	Repeat motifs	Sequence 5'–3'	Annealing temperature (°C)
ISSR-1	AT	ΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΤ	40
SSR-2	AT	ATATATATATATATATG	40
SSR-3	AT	ATATATATATATATATATC	40
SSR-4	ТА	ΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΑ	40
SSR-5	ТА	TATATATATATATATAC	40
SSR-6	ТА	TATATATATATATATAG	40
ISSR-7	AG	AGAGAGAGAGAGAGAGT	50
ISSR-8	AG	AGAGAGAGAGAGAGAGAGC	50
SSR-9	AG	AGAGAGAGAGAGAGAGG	50
SSR-10	GA	GAGAGAGAGAGAGAGAGAT	50
ISSR-11	GA	GAGAGAGAGAGAGAGAGAC	50
SSR-12	GA	GAGAGAGAGAGAGAGAA	50
SSR-13	СТ	CTCTCTCTCTCTCTCTT	50
SSR-14	СТ	CTCTCTCTCTCTCTCTA	50
SSR-15	CT	CTCTCTCTCTCTCTCTG	50
ISSR-16	CA	CACACACACACACACAT	50
ISSR-17	CA	CACACACACACACACAA	50
ISSR-18	CA	CACACACACACACACAG	50
SSR-19	GT	GTGTGTGTGTGTGTGTGTA	50
SSR-20	GT	GTGTGTGTGTGTGTGTGTC	50
SSR-21	GT	GTGTGTGTGTGTGTGTGTT	50
SSR-22	TC	TCTCTCTCTCTCTCTCA	50
ISSR-23	TC	TCTCTCTCTCTCTCTCC	50
SSR-24	TC	TCTCTCTCTCTCTCTCG	50
SSR-25	AC	ACACACACACACACACT	50
ISSR-26	AC	ACACACACACACACACC	50
SSR-27	AC	ACACACACACACACACG	50
ISSR-28	TG	TGTGTGTGTGTGTGTGA	50
ISSR-29	TG	TGTGTGTGTGTGTGTGC	50
ISSR-30	TG	TGTGTGTGTGTGTGTGG	50
SSR-31	AT	ΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ	40
ISSR-32	AT	ATATATATATATATATGA	40
SSR-33	AT	ΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ	40
ISSR-34	AT	ΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΤΤΟ	40
SSR-35	AT	ATATATATATATATATGC	40
SSR-36	AT	ΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΟ	40
SSR-37	AT	ΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΤΤ	40
SSR-38	AT	ATATATATATATATATGG	40
SSR-39	AT	ATATATATATATATATCG	40
SSR-40	AG	AGAGAGAGAGAGAGAGAGTT	55
SSR-41	AG	AGAGAGAGAGAGAGAGAG	55
ISSR-42	AG	AGAGAGAGAGAGAGAGAGCT	55
ISSR-43	AG	AGAGAGAGAGAGAGAGAGTC	55
ISSR-44	AG	AGAGAGAGAGAGAGAGAGGC	55
ISSR-45	AG	AGAGAGAGAGAGAGAGAGCC	55
ISSR-46	AG	AGAGAGAGAGAGAGAGAGTA	55
ISSR-47	AG	AGAGAGAGAGAGAGAGAGAG	55

Table 6 Summary of primers used in this study

Primer name	Repeat motifs	Sequence 5'–3'	Continuing Table 6 Annealing temperature (°C)
ISSR-48	AG	AGAGAGAGAGAGAGAGAGAGAG	55
ISSR-49	TA	ΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤ	50
ISSR-50	TA	ΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑ	50
ISSR-51	ТА	ΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΑΟ	50
ISSR-52	ТА	TATATATATATATATAGC	50
ISSR-53	ТА	ΤΑΤΑΤΑΤΑΤΑΤΑΤΑΤΑΑG	50
ISSR-54	ТА	TATATATATATATATAGG	50
ISSR-55	GA	GAGAGAGAGAGAGAGAGATT	55
ISSR-56	GA	GAGAGAGAGAGAGAGAGAGT	55
ISSR-57	GA	GAGAGAGAGAGAGAGAGACT	55
ISSR-58	GA	GAGAGAGAGAGAGAGAGATC	55
ISSR-59	GA	GAGAGAGAGAGAGAGAGAGC	55
ISSR-60	GA	GAGAGAGAGAGAGAGAGACC	55
ISSR-61	GA	GAGAGAGAGAGAGAGAGATG	55
ISSR-62	GA	GAGAGAGAGAGAGAGAGAGG	55
ISSR-63	GA	GAGAGAGAGAGAGAGAGACG	55
ISSR-64	СТ	CTCTCTCTCTCTCTCTAA	55
ISSR-65	СТ	CTCTCTCTCTCTCTCTGA	55
ISSR-66	СТ	CTCTCTCTCTCTCTCTAC	55
ISSR-67	СТ	CTCTCTCTCTCTCTCTGC	55
ISSR-68	СТ	CTCTCTCTCTCTCTCTAG	55
ISSR-69	СТ	CTCTCTCTCTCTCTCTGG	55
ISSR-70	СА	CACACACACACACACAAT	55
ISSR-71	СА	CACACACACACACAGT	55
ISSR-72	СА	CACACACACACACACAAC	55
ISSR-73	СА	CACACACACACACAGC	55
ISSR-74	CA	CACACACACACACACAAG	55
ISSR-75	СА	CACACACACACACAGG	55
ISSR-76	GT	GTGTGTGTGTGTGTGTGTTA	55
ISSR-77	GT	GTGTGTGTGTGTGTGTGA	55
ISSR-78	GT	GTGTGTGTGTGTGTGTGTCA	55
ISSR-79	GT	GTGTGTGTGTGTGTGTGTTC	55
ISSR-80	GT	GTGTGTGTGTGTGTGTGC	55
ISSR-81	GT	GTGTGTGTGTGTGTGTGTCC	55
ISSR-82	GT	GTGTGTGTGTGTGTGTGTG	55
ISSR-83	GT	GTGTGTGTGTGTGTGTGG	55
ISSR-84	GT	GTGTGTGTGTGTGTGTGTCG	55
ISSR-85	TC	TCTCTCTCTCTCTCAA	55
ISSR-86	TC	TCTCTCTCTCTCTCTCGA	55
ISSR-87	TC	TCTCTCTCTCTCTCTCAT	55
ISSR-88	TC	TCTCTCTCTCTCTCGT	55
ISSR-89	TC	TCTCTCTCTCTCTCAG	55
ISSR-90	TC	TCTCTCTCTCTCTCGG	55
ISSR-91	AC	ACACACACACACACACTT	55
ISSR-92	AC	ACACACACACACACGT	55
ISSR-93	AC	ACACACACACACACACCT	55
ISSR-94	AC	ACACACACACACACACTA	55

.			Continuing Table 6
Primer name	Repeat motifs	Sequence 5'-3'	Annealing temperature (°C)
ISSR-95	AC	ACACACACACACACACGA	55
ISSR-96	AC	ACACACACACACACACCA	55
ISSR-97	AC	ACACACACACACACACTG	55
ISSR-98	AC	ACACACACACACACACGG	55
ISSR-99	AC	ACACACACACACACACCG	55
ISSR-100	TG	TGTGTGTGTGTGTGTGAT	55
ISSR-101	TG	TGTGTGTGTGTGTGTGGT	55
ISSR-102	TG	TGTGTGTGTGTGTGTGAC	55
ISSR-103	TG	TGTGTGTGTGTGTGTGGC	55
ISSR-104	TG	TGTGTGTGTGTGTGTGAA	55
ISSR-105	TG	TGTGTGTGTGTGTGTGGA	55
ISSR-106	AC	ACCACCACCACCACCACC	60
ISSR-107	AGC	AGCAGCAGCAGCAGCAGC	60
ISSR-108	AGT	AGTAGTAGTAGTAGTAGT	50
ISSR-109	ATG	ATGATGATGATGATGATG	50
ISSR-110	CCG	CCGCCGCCGCCGCCGCCG	60
ISSR-111	CTC	CTCCTCCTCCTCCTCCTC	60
ISSR-112	GGC	GGCGGCGGCGGCGGCGGC	60
ISSR-113	GAA	GAAGAAGAAGAAGAAGAA	50
ISSR-114	GTT	GTTGTTGTTGTTGTTGTT	50
ISSR-115	TGC	TGCTGCTGCTGCTGCTGC	60
ISSR-116	TAT	TATTATTATTATTATTAT	50
ISSR-117	GATA	GATAGATAGATAGATA	50
ISSR-118	GACA	GACAGACAGACAGACA	50
ISSR-119	CCCT	CCCTCCCTCCCTCCCT	55
ISSR-120	CTAG	CTAGCTAGCTAGCTAG	50
ISSR-121	GATA	GATAGATAGACAGACA	50
ISSR-122	TGCA	TGCATGCATGCATGCA	50
ISSR-123	GGAT	GGATGGATGGATGGAT	50
ISSR-124	CTTCA	CTTCACTTCACTTCA	50
ISSR-125	GA	GGAGAGGAGAGGAGA	50
ISSR-126	GGGT	GGGTGGGGTGGGGTG	55
ISSR-127	AT	ΑCΑΑΤΑΤΑΤΑΤΑΤΑΤΑΤ	50
ISSR-128	AT	CCCATATATATATATAT	50
ISSR-129	AT	GCGATATATATATATAT	50
ISSR-130	AT	AGAATATATATATATAT	50
ISSR-131	AT	CGCATATATATATATAT	50
ISSR-132	AT	СТСАТАТАТАТАТАТАТ	50
ISSR-132	AT	GCGATATATATATATAT	50
ISSR-134	AT	GGGATATATATATATAT	50
ISSR-134 ISSR-135	AT	GTGATATATATATATATATATATATATATATATATATAT	50
ISSR-135 ISSR-136	TA	САСТАТАТАТАТАТАТА	50
ISSR-130 ISSR-137	TA	СССТАТАТАТАТАТАТА	50
ISSR-137 ISSR-138	TA	СССТАТАТАТАТАТАТА	50
ISSR-138 ISSR-139	TA	GAGTATATATATATATA	50
ISSR-139 ISSR-140	TA	GCGTATATATATATATA	50
ISSR-141	TA	GGGTATATATATATATA	50

Primer name	Repeat motifs	Sequence 5'–3'	Continuing Table 6 Annealing temperature (°C)
ISSR-142	TA	ΤΑΤΤΑΤΑΤΑΤΑΤΑΤΑΤΑ	50
ISSR-143	ТА	ΤCTTATATATATATATA	50
ISSR-144	ТА	TGTTATATATATATATA	50
ISSR-145	AG	ACAAGAGAGAGAGAGAG	50
ISSR-146	AG	AGAAGAGAGAGAGAGAGAG	50
ISSR-147	AG	ATAAGAGAGAGAGAGAG	50
ISSR-148	AG	CCCAGAGAGAGAGAGAG	55
ISSR-149	AG	CGCAGAGAGAGAGAGAG	55
ISSR-150	AG	CTCAGAGAGAGAGAGAG	50
ISSR-151	AG	TCTAGAGAGAGAGAGAG	50
ISSR-152	AG	TGTAGAGAGAGAGAGAG	50
ISSR-153	AG	TTTAGAGAGAGAGAGAG	50
ISSR-154	GA	CACGAGAGAGAGAGAGAGA	50
ISSR-155	GA	CCCGAGAGAGAGAGAGAGA	55
ISSR-156	GA	CTCGAGAGAGAGAGAGAGA	50
ISSR-157	GA	GAGGAGAGAGAGAGAGAGA	50
ISSR-158	GA	GCGGAGAGAGAGAGAGAGA	55
ISSR-159	GA	GTGGAGAGAGAGAGAGA	50
ISSR-160	GA	TATGAGAGAGAGAGAGA	50
ISSR-161	GA	TCTGAGAGAGAGAGAGAGA	50
ISSR-162	GA	TTTGAGAGAGAGAGAGA	50
ISSR-163	СТ	AAACTCTCTCTCTCTCT	50
ISSR-164	СТ	AGACTCTCTCTCTCTCT	50
ISSR-165	СТ	ATACTCTCTCTCTCTCT	50
ISSR-166	СТ	CACCTCTCTCTCTCTCT	50
ISSR-167	СТ	CGCCTCTCTCTCTCTCT	55
ISSR-168	СТ	CTCCTCTCTCTCTCTCT	50
ISSR-169	СТ	GAGCTCTCTCTCTCTCT	50
ISSR-170	СТ	GGGCTCTCTCTCTCTCT	55
ISSR-171	СТ	GTGCTCTCTCTCTCTCT	50
ISSR-172	TC	AAATCTCTCTCTCTCTC	50
ISSR-173	TC	ACATCTCTCTCTCTCTC	50
ISSR-174	TC	AGATCTCTCTCTCTCTC	50
ISSR-175	TC	GAGTCTCTCTCTCTCTC	50
ISSR-176	TC	GCGTCTCTCTCTCTCTC	55
ISSR-177	TC	GGGTCTCTCTCTCTCTC	55
ISSR-178	TC	TATTCTCTCTCTCTCTC	50
ISSR-179	TC	TCTTCTCTCTCTCTCTC	50
ISSR-180	TC	TGTTCTCTCTCTCTCTC	50
ISSR-181	CA	CACCACACACACACACA	50
ISSR-182	CA	CGCCACACACACACACA	55
ISSR-183	CA	CTCCACACACACACACA	50
ISSR-184	CA	GAGCACACACACACACA	50
ISSR-185	CA	GGGCACACACACACACA	55
ISSR-186	СА	GTGCACACACACACA	50
ISSR-187	СА	TATCACACACACACACA	50
ISSR-188	CA	TGTCACACACACACACA	50

Primer name	Repeat motifs	Sequence 5'–3'	Continuing Table 6 Annealing temperature (°C)
ISSR-189	CA	TTTCACACACACACA	50
ISSR-189 ISSR-190	AC	ACAACACACACACACACA	50
ISSR-190 ISSR-191	AC	AGAACACACACACACACAC	50
	AC		50
ISSR-192 ISSR-193		ATAACACACACACACAC	55
	AC	GCGACACACACACACAC	
ISSR-194	AC	GGGACACACACACAC	55
ISSR-195	AC	GTGACACACACACAC	50
ISSR-196	AC	TCTACACACACACACAC	50
ISSR-197	AC	TGTACACACACACACAC	50
ISSR-198	AC	TTTACACACACACACAC	50
ISSR-199	GT	AAAGTGTGTGTGTGTGTGT	50
ISSR-200	GT	ACAGTGTGTGTGTGTGTGT	50
ISSR-201	GT	ATAGTGTGTGTGTGTGTGT	50
ISSR-202	GT	CACGTGTGTGTGTGTGTGT	50
ISSR-203	GT	CCCGTGTGTGTGTGTGTGT	55
ISSR-204	GT	CTCGTGTGTGTGTGTGTGT	50
ISSR-205	GT	GAGGTGTGTGTGTGTGTGT	50
ISSR-206	GT	GCGGTGTGTGTGTGTGTGT	55
ISSR-207	GT	GTGGTGTGTGTGTGTGT	50
ISSR-208	TG	AAATGTGTGTGTGTGTGTG	50
ISSR-209	TG	ACATGTGTGTGTGTGTG	50
ISSR-210	TG	AGATGTGTGTGTGTGTGTG	50
ISSR-211	TG	CACTGTGTGTGTGTGTGTG	50
ISSR-212	TG	CCCTGTGTGTGTGTGTGTG	55
ISSR-213	TG	CGCTGTGTGTGTGTGTGTG	55
ISSR-214	TG	TATTGTGTGTGTGTGTG	50
ISSR-215	TG	TCTTGTGTGTGTGTGTG	50
ISSR-216	TG	TGTTGTGTGTGTGTGTGTG	50

4 Materials and Methods

4.1 Plant materials

In total, 140 samples included 85 cultivars from Chinese jujube and 55 individuals from sour jujube (Table 2). These materials maintained in jujube germplasm resources of Luoyang Normal University (Luoyang, Henan) were acquired with permissions from the National Chinese Jujube Germplasm Repository (Taigu, Shanxi), the National Foundation for Improved Cultivar of Chinese Jujube (Cangzhou, Hebei) and the Xinzheng Jujube Academy of Science (Xinzheng, Henan). Fresh young leaves for each accession were collected in May 2017, brought to the laboratory in an ice box, and stored in -70°C freezer till further analysis.

4.2 Genomic DNA extraction and PCR analysis

Genomic DNA was extracted using a modified CTAB method (Lian et al., 2006). The DNA quality was assessed using a NanoDrop2000 and the DNA was diluted to 50 ng/ μ L. Sequences of 216 ISSR primers were obtained from the Biotechnology Laboratory at the University of British Columbia (Vancouver, Canada; Table 7). Polymerase chain reaction (PCR) amplification was performed in a 10 μ L reaction mixture containing 2.0 μ L of template DNA, 0.4 μ L of primers (10 μ M), 0.8 μ L of dNTP (2.5 mM), 1.0 μ L of 10×Buffer, 0.2 μ L of Taq DNA Polymerase (Solarbio, Beijing, China), and 5.6 μ L of deionized water. PCR amplifications were performed in 96-well plates on a 2720 Thermal Cycler (Applied Biosystems, Foster City, CA, USA) under the following conditions: 94°C for 3 min; 35 cycles at 94°C for 30 s, 40°C~60°C (melting temperature depends on the primer sets as listed in Table 7) for 30 s, and 72°C for 1.5 min; and a final extension at 72°C for 10 min. The amplified products were separated by electrophoresis on 2.0% (w/v) agarose gels under UV light.

Molecular Plant Breeding 2021, Vol.12, No.14, 1-21 http://genbreedpublisher.com/index.php/mpb

Accessions	Inferred clusters		
	Cluster I	Cluster II	
J01	0.7716	0.2284	
J02	0.9756	0.0244	
J03	0.6077	0.3923	
J04	0.4955	0.5045	
J05	0.982	0.018	
J06	0.5183	0.4817	
J07	0.87	0.13	
J08	0.9833	0.0167	
J09	0.7421	0.2579	
J10	0.9447	0.0553	
J11	0.8421	0.1579	
J12	0.979	0.021	
J13	0.979	0.021	
J14	0.8884	0.1116	
J15	0.8858	0.1142	
J16	0.8054	0.1946	
J17	0.8631	0.1369	
J18	0.9809	0.0191	
J19	0.8961	0.1039	
J20	0.842	0.158	
J21	0.5886	0.4114	
J22	0.8604	0.1396	
J23	0.6531	0.3469	
J24	0.9209	0.0791	
J25	0.773	0.227	
J26	0.9861	0.0139	
J27	0.9462	0.0538	
J28	0.9402	0.0187	
J29			
J29 J30	0.9682	0.0318	
	0.9512	0.0488	
J31	0.986	0.014	
J32	0.9702	0.0298	
J33	0.9334	0.0666	
J34	0.9384	0.0616	
J35	0.9841	0.0159	
J36	0.9802	0.0198	
J37	0.8852	0.1148	
J38	0.7261	0.2739	
J39	0.9344	0.0656	
J40	0.6803	0.3197	
J41	0.9831	0.0169	
J42	0.984	0.016	
J43	0.9762	0.0238	
J44	0.9533	0.0467	
J45	0.7967	0.2033	
J46	0.9815	0.0185	
J47	0.7419	0.2581	
J48	0.9832	0.0168	
J49	0.9765	0.0235	
J50	0.9675	0.0325	
J51	0.9852	0.0148	

Table 7 Inferred ancestry of the 140 accessions based on Bayesian analysis

Continuing Table 7

Accessions	Inferred clusters			
	Cluster I	Cluster II		
J52	0.9629	0.0371		
J53	0.9782	0.0218		
J54	0.7965	0.2035		
155	0.9742	0.0258		
J56	0.985	0.015		
157	0.987	0.013		
158	0.9662	0.0338		
159	0.968	0.032		
160	0.9769	0.0231		
161	0.9581	0.0419		
162	0.9802	0.0198		
163	0.7295	0.2705		
164	0.9393	0.0607		
165	0.9692	0.0308		
166	0.9614	0.0386		
J67	0.9879	0.0121		
168	0.9793	0.0207		
169	0.9832	0.0168		
170	0.988	0.012		
171	0.985	0.015		
172	0.9501	0.0499		
173	0.988	0.012		
174	0.9354	0.0646		
175	0.983	0.017		
I76	0.8357	0.1643		
177	0.8757	0.1243		
178	0.471	0.529		
179	0.9142	0.0858		
180	0.8405	0.1595		
181	0.8386	0.1614		
182	0.9499	0.0501		
183	0.7207	0.2793		
I84	0.8029	0.1971		
185	0.7338	0.2662		
501	0.3805	0.6195		
502	0.4215	0.5785		
503	0.9669	0.0331		
504	0.6386	0.3614		
504 505				
	0.0573	0.9427		
506	0.3189	0.6811		
507	0.0241	0.9759		
508	0.0538	0.9462		
509	0.3233	0.6767		
510	0.6448	0.3552		
511	0.1037	0.8963		
512	0.0794	0.9206		
513	0.0346	0.9654		
514	0.1483	0.8517		
\$15	0.1176	0.8824		
S16	0.0226	0.9774		
S17	0.0548	0.9452		

Con	tin	uing	Tah	le	7
COL	um	umg	Tau	IC	1

Accessions	Inferred clusters		
	Cluster I	Cluster II	
S18	0.0399	0.9601	
S19	0.0572	0.9428	
S20	0.0361	0.9639	
S21	0.4628	0.5372	
S22	0.025	0.975	
S23	0.0469	0.9531	
S24	0.0292	0.9708	
S25	0.2675	0.7325	
S26	0.1223	0.8777	
S27	0.019	0.981	
S28	0.1154	0.8846	
S29	0.0443	0.9557	
S30	0.4695	0.5305	
S31	0.0251	0.9749	
S32	0.1043	0.8957	
S33	0.0199	0.9801	
S34	0.0885	0.9115	
S35	0.0576	0.9424	
S36	0.0338	0.9662	
S37	0.0464	0.9536	
S38	0.1207	0.8793	
S39	0.0368	0.9632	
S40	0.1017	0.8983	
S41	0.018	0.982	
S42	0.026	0.974	
S43	0.027	0.973	
S44	0.0952	0.9048	
S45	0.0296	0.9704	
S46	0.8219	0.1781	
S47	0.7542	0.2458	
S48	0.7218	0.2782	
S49	0.0154	0.9846	
S50	0.6563	0.3437	
S51	0.7359	0.2641	
S52	0.3842	0.6158	
\$53	0.4102	0.5898	
S54	0.9776	0.0224	
855	0.1776	0.8224	

4.3 Genetic diversity analysis

Based on the relative position of the ISSR amplification product on the agarose gel, the presence and absence of bands at the same position were scored as "1" and "0", respectively. The following parameters were calculated using GenALEx 6.5 (Peakall and Smouse, 2012): the number of different alleles (Na), the effective number of alleles (Ne), the Shannon index (I), and the polymorphic information content (PIC).

The cluster analysis was performed using the sequential, agglomerative, hierarchical, and nested clustering (SAHN) module and the unweighted pair-group method arithmetic average (UPGMA) method of NTSYS-pc2.10e software, and a cluster plot was generated by the Tree plot module (Rohlf, 1998).

4.4 Population structure analysis

A Bayesian clustering analysis was implemented in Structure 2.3.4 (Hubisz et al., 2009) to evaluate population genetic structure. An admixture model and correlated allele frequencies were applied to estimate the ancestry fractions of each cluster attributed to each accession. For each value of K (range 1-25), 10 independent runs were performed with a burn-in period of 100,000 followed by 1,000,000 MCMC repetitions. Parameters were set to default values, and all accessions were considered to have unknown origins. The delta K method (Evanno et al., 2005) was implemented in Structure Harvester program (Earl and Vonholdt, 2012) to determine the most probable K-value. The accessions with membership probabilities ≥ 0.50 were considered to belong to the same group (Chen et al., 2017b). A principal coordinate analysis (PCoA) and Mantel test were performed using GenAlEx v 6.5.

Authors' contributions

S.P.L. and M.X.G. conducted most of the experiments, including germplasm collection, genomic DNA extraction and PCR analysis, genetic diversity and cluster analysis, and population structure analysis. S.T. participated in germplasm collection and DNA extraction. H.X.L. participated in germplasm collection. X.S.Z. initiated the project. S.P.L. and X.S.Z. designed and supervised the study. S.P.L. and M.X.G. analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Acknowledgments

We thank Prof. Dengke Li at the National Chinese Jujube Germplasm Repository for help in collecting the jujube cultivars. This work was supported by the Natural Science Foundation of Henan Province (Grant No. 162300410198) and the Key Science and Technology Program of Henan Province (Grant No. 192102110058 and 212102110183).

References

- Bai R.X., 2008, Studies on genetic diversity and core collection construction of *Ziziphus* jujube germplasm resources using AFLP and SRAP markers, PhD. Thesis, Hebei Agricultural University
- Botstein D., White R.L., Skolnick M.H., and Davis R.W., 1980, Construction of a genetic map in man using restriction fragment length polymorphism, American Journal of Human Genetics, 32(3): 314-331
- Chen J.P., Liu X.Y., Li Z.G., Airong Qi, Yao P., Zhou Z.Y., Tina T. X. Dong, and Karl W. K. Tsim, 2017a, A review of dietaryziziphus jujube fruit (jujube): developing health food supplements for brain protection, Evidence-Based Complementray and Alternative Medicine, 2017: 1-10 https://doi.org/10.1155/2017/3019568

PMid:28680447 PMCid:PMC5478819

- Chen W., Hou L., Zhang Z., Pang X., and Li Y., 2017b, Genetic diversity, population structure, and linkage disequilibrium of a core collection of *ziziphus jujuba* assessed with genome-wide SNPs developed by genotyping-by-sequencing and SSR markers, Frontiers in Plant Science, 8: 575 https://doi.org/10.3389/fpls.2017.00575
- Chen X., Min D., Yasir T.A., and Hu Y.G., 2012, Genetic diversity, population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers, Plos One, 7(9): e44510

https://doi.org/10.1371/journal.pone.0044510

PMid:22957076 PMCid:PMC3434133

Choi S.H., Ahn J.B., Kim H.J., Im N.K., Kozukue N., Levin C.E., and Friedman M., 2012, Changes in free amino acid, protein, and flavonoid content in jujube (*ziziphus* jujube) fruit during eight stages of growth and antioxidative and cancer cell inhibitory effects by extracts, Journal of Agricultural & Food Chemistry, 60(41): 10245-10255

https://doi.org/10.1021/jf302848u

PMid:23046062

- Cui C.J., Li Y., Liu Y.L., Li X.J., Luo S.J., Zhang Z.Z., Wu R.N., Liang G.J., Sun J., Peng J., and Tian P.P., 2017, Determination of genetic diversity among Saccharina germplasm using ISSR and RAPD markers, Comptes Rendus Biologies, 340(2): 76-86 <u>https://doi.org/10.1016/j.crvi.2016.11.005</u> PMid:28038977
- Earl D.A., and Vonholdt B.M., 2012, STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method, Conservation Genetics Resources, 4(2): 359-361 <u>https://doi.org/10.1007/s12686-011-9548-7</u>
- Evanno G., Regnaut S., and Goudet J., 2005, Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study, Molecular Ecology, 14(8): 2611-2620

https://doi.org/10.1111/j.1365-294X.2005.02553.x PMid:15969739

Fu P.C., Zhang Y.Z., Ya H.Y., and Gao Q., 2016, Characterization of SSR genomic abundance and identification of SSR markers for population genetics in Chinese jujube (*Ziziphus jujuba* Mill.), Peer J, 4(2): e1735 <u>https://doi.org/10.7717/peerj.1735</u>

Gao Q.H., Wu C.S., and Wang M., 2013, The jujube (Ziziphus jujuba Mill.) fruit: a review of current knowledge of fruit composition and health benefits, Journal of Agricultural & Food Chemistry, 61(14): 3351-3363 <u>https://doi.org/10.1021/jf4007032</u>

PMid:23480594

Huang J., Yang X., Zhang C., Yin X., Liu S, and Li X., 2015, Development of chloroplast microsatellite markers and analysis of chloroplast diversity in Chinese jujube (*Ziziphus jujuba* Mill.) and wild jujube (*Ziziphus acidojujuba* Mill.), Plos One, 10(9): e0134519 <u>https://doi.org/10.1371/journal.pone.0134519</u>

PMid:26406601 PMCid:PMC4583483

- Hubisz M.J., Falush D., Stephens M., and Pritchard J.K., 2009, Inferring weak population structure with the assistance of sample group information, Molecular Ecology Resources, 9(5): 322-1332

https://doi.org/10.1111/j.1755-0998.2009.02591.x

PMid:21564903 PMCid:PMC3518025

Islam M.B., and Simmons M.P., 2006, A thorny dilemma: testing alternative intrageneric classifications within *ziziphus* (Rhamnaceae), Systematic Botany, 31(4): 826-842

https://doi.org/10.1600/036364406779695997

Jakobsson M., and Rosenberg N.A., 2007, CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure, Bioinformatics, 23(14): 1801-1806

https://doi.org/10.1093/bioinformatics/btm233 PMid:17485429

Kumar V., and Roy B.K., 2018, Population authentication of the traditional medicinal plant *Cassia tora* L. based on ISSR markers and FTIR analysis[J], Scientific Reports, 8(1): 10714

https://doi.org/10.1038/s41598-018-29114-1

PMid:30013159 PMCid:PMC6048050

Levi A., Thomas C.E., Trebitsh T., Salman A., King J., Karalius J., Newman M., Reddy O.U.K., Xu Y., and Zhang X., 2006, An extended linkage map for watermelon based on SRAP, AFLP, SSR, ISSR, and RAPD markers, Journal of the American Society for Horticultural Science American Society for Horticultural Science, 131(3): 393-402

https://doi.org/10.21273/JASHS.131.3.393

- Li D.K., Niu X.W., and Tian J.B., 2013, The Illustrated Germplasm Resources of Chinese, Beijing: China Agriculture Press
- Li Y., Xu C., Lin X., Cui B., Wu R., and Pang X., 2014, De novo assembly and characterization of the fruit transcriptome of Chinese jujube (*Ziziphus jujuba* Mill.) using 454 pyrosequencing and the development of novel tri-nucleotide SSR markers, Plos One, 9(9): e106438

https://doi.org/10.1371/journal.pone.0106438 PMid:25184704 PMCid:PMC4153635

Lian C.L., Wadud M.A., Geng Q., Shimatani K., and Hogetsu T., 2006, An improved technique for isolating codominant compound microsatellite markers, Journal of Plant Research, 119(4): 415-417

https://doi.org/10.1007/s10265-006-0274-2

PMid:16636745

Liu M.J., and Wang M., 2009, Chinese jujube germsplasm resources, Beijing: China Forestry Publishing House Press

Liu M.J., Zhao J., Cai Q.L., Liu G.C., Wang J.R., Zhao Z.H., Liu P., Dai L., Yan G.J., Wang W.J., Li X.S., Chen Y., Sun Y.D., Liu Z.G., Lin M.J., Xiao J., Chen Y.Y., Li X.F., Wu B., Ma Y., Jian J.B., Yang W., Yuan Z., Sun X.C., Wei Y.L., Yu L.L., Zhang C., Liao S.G., He R.J., Guang X.M., Wang Z., Zhang Y.Y., and Luo L.H., 2014, The complex jujube genome provides insights into fruit tree biology, Nature Communications, 5(1): 5315 https://doi.org/10.1038/ncomms6315

PMid:25350882 PMCid:PMC4220462

- Liu M.J., 2003, Genetic diversity of Chinese jujube (*ziziphus jujuba* Mill.), Acta Horticulturae, 623(40): 351-355 https://doi.org/10.17660/ActaHortic.2003.623.40
- Liu X.Y., Hui L.I., Liu Z.G., Zhao J., and Liu M.J., 2016, Genetic diversity and structure of 255 cultivars of *ziziphus jujuba* Mill, Scientia Agricultura Sinica, 49(14): 2772-2791
- Ma Q.H., Wang G.X., and Liang L.S, 2011, Development and characterization of SSR markers in Chinese jujube (*Ziziphus jujuba*, Mill.) and its related species, Scientia Horticulturae, 129(4): 597-602

https://doi.org/10.1016/j.scienta.2011.04.032

Peakall R., and Smouse P.E., 2012, Genalex 6.5: genetic analysis in excel, population genetic software for teaching and research-an update, Bioinformatics, 28(19): 2537-2539

https://doi.org/10.1093/bioinformatics/bts460

PMid:22820204 PMCid:PMC3463245

Reddy M.P., Sarla N., and Siddiq E.A., 2002, Inter simple sequence repeat (ISSR) polymorphism and its application in plant breeding, Euphytica, 128(1): 9-17 https://doi.org/10.1023/A:1020691618797

Peng J.Y., Shu H.R., Sun Z.X., and Peng S.Q., 2000, RAPD analysis of germplasm resources on Chinese date, Acta Horticulturae Sinica, 27(3): 171-176 Qu Z.Z., and Wang Y.H., 1993, China fruit's monograph-Chinese jujube volume, Beijing: China Forestry Publishing House Press

Rohlf F.J., 1998, NTSYS-pc: numerical taxonomy system, ver. 2.1, New York: Applied Biostatistics Inc.

Singh S.K., Chhajer S., Pathak R., Bhatt R.K., and Kalia R.K., 2017, Genetic diversity of Indian jujube cultivars using SCoT, ISSR, and rDNA markers, Tree Genetics & Genomes, 13(1): 12

https://doi.org/10.1007/s11295-016-1092-x

- Soliman H.I., Abd G., and Hegazi E.M., 2013, In vitro clonal propagation and molecular characterization of jujube (*Ziziphus jujuba* Mill.), Life Science Journal, 10(2): 573-582
- Sunar S., Yildirim N., Sengul M., and Agar G., 2016, Genetic diversity and relationships detected by ISSR and RAPD analysis among *Aethionema* species growing in Eastern Anatolia (Turkey), Comptes Rendus Biologies, 339(3-4): 147-151 <u>https://doi.org/10.1016/j.crvi.2016.02.006</u>

PMid:27012533

Wang S., Liu Y., Ma L., Liu H., Tang Y., Wu L., Wang Z., Li Y., Wu R., and Pang X., 2014, Isolation and characterization of microsatellite markers and analysis of genetic diversity in Chinese jujube (*Ziziphus jujuba* Mill.), Plos One, 9(6): e99842

https://doi.org/10.1371/journal.pone.0099842

PMid:24932973 PMCid:PMC4059666

Xiao J., Zhao J., Liu M., Liu P., Li D., and Zhao Z., 2015, Genome-Wide Characterization of Simple Sequence Repeat (SSR) Loci in Chinese Jujube and Jujube SSR Primer Transferability, Plos One, 10(5): e0127812

https://doi.org/10.1371/journal.pone.0127812 PMid:26000739 PMCid:PMC4441482

- Xie Y.B., 2014, Morphological evaluation on germplasm resources of jujube and cultivar Identification by AFLP, Master Thesis, Shandong Agricultural University
- Xu C., Gao J., Du Z., Li D., Wang Z., Li Y., and Pang X., 2016, Identifying the genetic diversity, genetic structure and a core collection of *ziziphus jujuba* Mill. var. jujuba accessions using microsatellite markers, Scientific Reports, 6(1): 31503

https://doi.org/10.1038/srep31503

PMid:27531220 PMCid:PMC4987672

Zhang C., Huang J., Xiao Y., Lian C., and Li X., 2015a, Genetic diversity and population structure of sour jujube, Ziziphus acidojujuba, Tree Genetics & Genomes, 11(1): 809

https://doi.org/10.1007/s11295-014-0809-y

- Zhang G.Q., Jian-Min Q.I., Zhang X.C., Fnag P.P., Su J.G., Ta A.F., Lan T., Wu W.R., and Liu A.M., 2011, A genetic linkage map of kenaf (*Hibiscus cannabinus* L.) based on SRAP, ISSR and RAPD Markers, Journal of Integrative Agriculture, 10(9): 1346-1353 <u>https://doi.org/10.1016/S1671-2927(11)60127-2</u>
- Zhang P.F., Dong-Feng Y.U., Liu Y.L., Song M.L., Zhang R., and Yong P., 2015b, Genetic diversity of Ziziphus jujuba Mill. and Z. jujuba var. spinosa based on SSR markers, Acta Agriculturae Boreali-Sinica, 30: 160-155
- Zhang Z., Gao J., Kong D., Wang A., Tang S., Li Y., and Pang X., 2015c, Assessing genetic diversity in *Ziziphus jujuba*, 'Jinsixiao zao' using morphological and microsatellite (SSR) markers, Biochemical Systematics & Ecology, 61(-): 196-202

https://doi.org/10.1016/j.bse.2015.06.021

Zietkiewicz E., Rafalski A., and Labuda D., 1994, Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification, Genomics, 20(2): 176-183

https://doi.org/10.1006/geno.1994.1151

PMid:8020964