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Abstract Anthocyanins are important substances accounting for the leaf color in Brassica juncea and PAP1 gene is one of the key
transport factors in the anthocyanin synthesis pathway. In this study, homologous cloning technology was used to clone the PAP1
gene sequences of Brassica juncea with different leaf colors. Specific primers were designed according to the gene sequences of
Brassica rapa with high homology for PCR amplification. The PAP1 gene of Brassica juncea is 1 348 bp~1 669 bp long, and the
coding region sequence is 744 bp~753 bp, including 3 exons and 2 introns. Two MYB blinding domains are found in PAP1 protein at
the site of 9~59 and 62~110 amino acids. Phylogenetic analysis showed that the PAP1 gene of Brassica juncea had high homology
with the related genes of Brassica rapa and Brassica rapa subsp. rapa, but had low homology with Arabidopsis thaliana. Compared
gene sequences in Brassica juncea with different leaf colors, there are no differences between the coding sequence of purple and red
leaf Brassica juncea, but the encoded protein have 22 amino acid differences from green leaves. We also observed the lower
expression level of PAP1 and its related target genes such as DFR, TT19 in green leaves, which may lead to the differences of leaf
color in Brassica juncea. This study provides a reference for exploring the function of PAP1 gene and the formation mechanism of
different leaf color of Brassica juncea.
Keywords PAP1 gene; Anthocyanin; Gene cloning; Expression analysis

Anthocyanin is a class of water-soluble natural pigment that exists widely in nature, and it is an important
secondary metabolite in plants, which could make plant leaves and petals show colorful colors (Fu et al., 2018).
The accumulation of anthocyanins could help plants enhance free radical scavenging and antioxidant, resist
environmental stresses such as low temperature and drought, and protect the tissues for photosynthesis (Butelli et
al., 2012; Kim et al., 2017). Meanwhile, edible foods rich in anthocyanins have many biological health care
functions, such as fighting cancer and improving cardiovascular (Puiggròs et al., 2014). Therefore, plant resources
rich in anthocyanins are highly valued by breeders, and have great application prospects in the breeding of
ornamental, vegetable and stress resistant varieties.

The transcription of the key enzyme genes for anthocyanin synthesis is mainly regulated by the MBW complex,
including MYB, bHLH and WD40 transcription factors. Among them, MYB transcription factor is the most
numerous, which plays an important role in regulating the synthesis and accumulation of anthocyanins (Dubos et
al., 2010; Xu et al., 2014; Yao et al., 2017). The proteins encoded by the PAP1 (Production of Anthocyanin
Pigment 1) gene belongs to R2R3 MYB transcription factor, which can regulate the expressions of DFR,
ANS/LDOX, TT19, TT8, GL3, EGL3 and other genes to promote the synthesis and accumulation of anthocyanins
(Maier et al., 2013; Yan et al., 2019). In Brassica oleracea (CC, 2n=18), the up-regulated expression of BoPAP1
is an important reason for the appearance of purple leaf traits. However, it is not completely clear whether there is
a similar mechanism in other Brassica species.

Brassica juncea (AABB, 2n=36) belongs to Brassica of Brassicaceae, which is an important raw material of oil
and vegetable crop in China, with abundant variation resources (Yang et al., 2016; Yang et al., 2018). Some genes
related to the color of the seed coat of Brassica juncea have been cloned, while there are fewer studies on cloning
and expression of gene related to leaf anthocyanin synthesis (Yan et al., 2007; Yan et al., 2011). Brassica rapa
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(AA, 2n=20), as the ancestor of Brassica juncea, provides a good sequence reference for homologous cloning
because its anthocyanin synthesis pathway is relatively clear (Guo et al., 2014).

The purpose of this study is to clone the PAP1 gene from Brassica juncea with different leaf colors through the
method of homologous cloning. And we also want to use bioinformatics methods to predict the structure and
function of the protein encoded by the PAP1 gene, to compare its sequence and expression differences among
leaves with different colors, and to explore the relationship between PAP1 gene and leaf color. This study
provides a reference for exploring the function of PAP1 gene and the formation mechanism of different leaf color
of Brassica juncea.

1 Results and Analysis
1.1 The phenotype of Brassica juncea with different leaf colors
The whole leaves of B. juncea (lv) are green. B. juncea (hong) is lavender overall and the purple radiates from the
edge of the leaf to the middle, while the veins are green. The leaves and veins of B. juncea (zi) are dark purple.
Their phenotypes are obviously different (Figure 1A). Moreover, it was found that the anthocyanin content from
high to low is B. juncea (zi), B. juncea (hong) and B. juncea (lv) by measuring. The anthocyanin content in B.
juncea (zi) is twice that of B. juncea (hong) and 9 times that of B. juncea (lv). Their anthocyanin content is also
obviously different (p<0.01) (Figure 1B). Therefore, we could know the phenotype of Brassica juncea with
different leaf colors related to anthocyanin content.

Figure 1 Comparison of leaf phenotype and anthocyanin content of Brassica juncea with different leaf colors
Note: A: The leaf types from left to right are Brassica juncea of purple, red and green; B: Different capital letters indicate significant
differences at 0.01 level

1.2 Cloning of PAP1 gene in Brassica juncea
Brassica rapa and Brassica juncea are both belongs to Brassica, and Brassica rapa is the ancestor of Brassica
juncea, so they two have high homology. We used the DNA of Brassica juncea of purple, red and green as
templates and designed homologous primers for PCR amplification by using the BraPAP1 gene sequence of
Brassica rapa. After agarose gel electrophoresis, we could see base pair is like a single strip with higher
brightness, the number of which is 1 546, 1 669, 1 664, 1 348, 1 598 (Figure 2). Then five PAP1 gene sequences
in Brassica juncea with different leaf colors were successfully cloned.

1.3 Sequence analysis of PAP1 gene in Brassica juncea
Through homologous cloning, the 5 sequences with higher homology were labeled as B.juncea (zi), B.juncea
(zi-2), B.juncea (lv), and B.juncea (lv-2), B.juncea (hong). The GenBank accession numbers of the cloned PAP1
genes are MT210230, MT210231, MT210232, MT210233 and MT210234. The sequencing results showed that
the PAP1 gene length of Brassica juncea is from 1 348 bp to 1 669 bp, and the CDS length is from 744 bp to 753
bp. It also showed the gene sequence includes 3 exons and 2 introns, and the number of encoded amino acids is
from 247 to 250 (Table 1).
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Figure 2 Amplification results of primer PAP1.2 in purple leaf
Note: M: DL2501 DNA marker; (zi-2): PCR product of purple leaf

Table 1 Basic information of PAP1 gene in different leaf colors Brassica juncea
Name Gene length (bp) CDS length(bp) Number of encoded amino acids B.rapa homologous gene number E value
B. juncea(zi-2) 1 546 753 250 Bra001 917 0
B. juncea(zi) 1 669 744 247 Bra004 162 0
B. juncea(lv-2) 1 598 750 249 Bra039 763 0
B. juncea(lv) 1 348 744 247 Bra004 162 0
B.juncea(hong) 1 664 744 247 Bra004 162 0

1.4 Bioinformatic analysis of PAP1 gene
Bioinformatic analysis showed that the theoretical molecular weight of the protein encoded by the PAP1 gene is
from 27 941.7 to 28 613.4 and the theoretical isoelectric point is from 8.75 to 9.17, which proved that the protein
is a basic protein. Using the online website ProtParam to analyze the proportion of amino acids in the PAP1
protein, we got the result that Leucine (Leu) has the highest amino acid content, which accounts for more than
10%. Using the ProtScale website (https://web.expasy.org/cgi-bin/protscale/protscale.pl/) to analyze the
hydrophilicity and hydrophobicity of the PAP1 protein, we found that PAP1 has no typical hydrophobic region,
which showed PAP1 protein is hydrophilic.

The secondary structure of PAP1 gene is mainly composed of α-helix (32.79%~38.96%), extended strand
(9.31%~12.96%), β turn (8.91%~12.80%) and random coil (38.80%~45.34%) (Table 2). Using SWISS-MODEL
(https://swissmodel.expasy.org/) software, we constructed tertiary structure of PAP1 protein (Figure 3).

Table 2 Physicochemical properties of PAP1 protein in Brassica juncea with different leaf colors
Name Protein molecular

weight (d)
pI α-helix

(%)
Extended
strand (%)

β turn
(%)

Random coil
(%)

Highest content
amino acids

Lowest content
amino acids

B. juncea(zi-2) 28 521.7 8.95 37.20 11.20 12.80 38.80 Leu Gln
B. juncea(zi) 27 941.7 8.75 35.63 9.31 11.34 43.72 Leu Phe, Tyr
B. juncea(lv-2) 28 613.4 8.40 38.96 10.84 9.24 40.96 Leu Met
B. juncea(lv) 28 036.9 9.17 32.79 12.96 8.91 45.34 Leu Tyr
B.juncea(hong) 27 941.7 8.75 35.63 9.31 11.34 43.72 Leu Phe, Tyr
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Figure 3 Prediction of tertiary structure of PAP1 protein in Brassica juncea

Using the SMART website (http://smart.embl-heidelberg.de/) to predict and analyze the conserved domain of
PAP1 protein and using the online website Plant-mPLoc to predict and analyze the subcellular location of PAP1
protein, we got the result that the conserved domain of PAP1 protein includes two typical SANT binding domains
(MYB binding domains), which respectively locates from the 9th to 59th and from 62nd to 110th of amino acid
sequence (Figure 4). Subcellular location predicted that the protein is located in the nucleus. It was further proved
that the cloned gene is the PAP1 gene of R2R3 MYB transcription factor family.

Figure 4 Comparison of amino acid sequences encoded by PAP1 gene in Brassica juncea with different leaf colors
Note: The background color black indicates the same amino acid, and there is a difference in the amino acid sequence of the
unlabeled black; the black box indicates the conserved SANT domain
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1.5 Phylogenetic analysis of the coding sequence of PAP1 gene
Putting the PAP1 protein sequence in Brassica juncea into the NCBI database for Blast search and comparison,
and selecting the amino acid sequence of the relative plant with the highest homology to PAP1 for multiple
sequence alignment and analysis, and then using MEGA v.7 software to build a phylogenetic tree, we got the
result that the amino acid sequence of PAP1 in Brassica juncea has the highest homology with the amino acid
sequence of B.rapa. The homology is from 92% to 100%. Among them, B.juncea (zi), B.juncea (lv) and B.juncea
(hong) have high homology with Bra004162 in the Brassica database. While B.juncea (zi-2) and B.juncea (lv-2)
have high homology with Bra001917 and Bra039763, respectively. It showed that the PAP1 protein is highly
conservative in evolution. The amino acid sequence of PAP1 in Brassica juncea also has high homology with
other relative plants of the same genus such as B.napus, B.rapa subsp. rapa, B.oleracea var. botrytis and so on.
The homology is from 89% to 98%. The phylogenetic tree showed that the model plant A.thaliana is distributed
outside the phylogenetic tree, indicating that the PAP1 protein in A.thaliana is relatively distant from the PAP1
protein in Brassica juncea (Figure 5).

Figure 5 Phylogenetic analysis between PAP1 protein of Brassica juncea and other relative plants

1.6 Comparison of PAP1 gene sequence in Brassica juncea with different leaf colors
It was found that there are certain differences among the PAP1 gene sequence in B.juncea(zi), B.juncea(lv) and
B.juncea(hong) by homology comparison analysis. The differences between PAP1 gene sequence in B.juncea(zi)
and that in B.juncea(hong), which are both homologous to Bra004162, are mainly concentrated in the intron
region (Figure 6). But the coding sequence and amino acid sequence of the two are exactly the same (Figure 4).
The sequence differences between B.juncea(zi)/B.juncea(hong) and B.juncea(lv) also exist in the coding region.
Although B.juncea(zi)/B.juncea(hong) and B.juncea(lv) encode 247 amino acids, there are 22 differences in the
amino acid sequence. Therefore, it was speculated that the difference of PAP1 gene sequence in Brassica juncea
may be the reason for difference of leaf color.

https://fanyi.baidu.com/?fr=websearch_submit&pid=sogou-site-1f2b8183cd1e469a
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Figure 6 CDS sequences comparison of different leaf colors Brassica juncea PAP1 gene that homologous to Bra004162 of B.rapa

1.7 Expression analysis of PAP1 gene and its regulatory genes
Extracting RNA from young leaves of B.juncea (zi) and B.juncea (lv) at the three-leaf stage, and using
quantitative PCR to analyze the expressions of PAP1 gene and its downstream genes DFR, TT19, TT8 and so on,
we got the result that the expressions of PAP1 gene and its downstream genes DFR, TT19, TT8, GL3 and EGL in
B.juncea (lv) is lower than that in B.juncea (zi) (p<0.05), and the expressions of DFR and TT19 in B.juncea (zi) is
5 to 7 times higher than that in B.juncea (lv) (Figure 7). It was known that the transcription factor encoded by the
PAP1 gene controls the expressions of downstream genes and affects the synthesis of anthocyanins. Furthermore,
it was also known that the expression difference of each gene is correlated with the leaf color of B.juncea (zi) and
B.juncea (lv). Therefore, it was speculated that different leaf colors may be caused by different expressions of
genes.
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Figure 7 Comparison of the expression levels of PAP1 and its downstream regulatory genes in Brassica juncea with different leaf
colors

Through the cloning and expression analysis of the PAP1 gene in Brassica juncea with different leaf colors, it was
found that the evolution of the PAP1 gene is extremely conservative. Moreover, there are different sequences and
expressions of PAP1 gene in B.juncea (zi) and B.juncea (lv). The expressions of PAP1 and its downstream genes
are significantly down-regulated in B.juncea (lv). In a word, it was speculated that the above differences may be
the reason for appearance of different leaf colors of Brassica juncea.

2 Discussion
Anthocyanin is important secondary metabolites in plants. Brassica juncea is rich in genetic resources and crops
with high anthocyanin content have great application prospects in ornamental, vegetable and stress resistance.
Jeon et al. (2018) conducted a comprehensive analysis of the transcriptome and metabolome of B. oleracea (lv)
and B. oleracea (hong). It was found that B. oleracea (hong) contains more anthocyanins than B. oleracea (lv) and
the expression of anthocyanin synthesis gene is positively correlated with anthocyanin content. Moreover, it was
found that the anthocyanin content in B. juncea (zi) is significantly higher than that in B. juncea (hong) and B.
juncea (lv), and the expressions of related genes involved in the anthocyanin synthesis in B. juncea (zi) is higher
than that in B. juncea (lv), indicating that anthocyanin is the main reason for leaf color changes.

The anthocyanin synthesis involves several structural genes and regulatory genes, among which, MYB is the most
important and most numerous transcriptional regulatory factors. According to the number of its structural domains,
it can be divided into four categories, namely 1R-MYB, R2R3-MYB, 3R -MYB and 4R-MYB. The expressions of
R2R3 MYB transcription factors PAP1 and PAP2 can increase the expressions of structural genes in anthocyanin
biosynthesis. In recent years, a large number of studies have shown that PAP1 is a key transcription factor of
MYB that regulates anthocyanin synthesis. The expression of anthocyanin was up regulated by binding to the
promoter of the target gene, thus promoting the accumulation of anthocyanins (Borevitz et al., 2000). Liu et al.
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(2017) cloned the Arabidopsis thaliana AtPAP1 gene from the Arabidopsis thaliana inflorescence. They
constructed a gene expression vector and transferred it into tobacco for heterologous gene expression. The results
showed that the tobacco plants show different colors, indicating that the overexpression of PAP1 gene has an
effect on the color of tobacco plants. In this study, five PAP1 gene sequences of Brassica juncea with different
leaf colors were cloned by using homologous cloning technology. Through structural domain analysis, it was
found that the PAP1 gene in Brassica juncea contains two conserved domains, namely the MYB binding domain,
which can be combined with the target gene promoter to induce the expressions of downstream genes, and its
structure is consistent with the predicted function, which showed that this gene plays a role in anthocyanin
biosynthesis. The homologous alignment of the gene sequence showed that the PAP1 gene has high homology
with the homologous sequence of Brassica rapa. Phylogenetic tree analysis showed that the PAP1 protein also
has high homology with other related plants of the Brassica genus, and it is relatively distant from A.thaliana,
which indicated that the gene is conservative in evolution. Compared with A.thaliana, Brassica experiences
genome triploidization, so the PAP1 gene also has multiple copies in Brassica juncea (Wang et al., 2011; Yang et
al., 2016). In this study, five sequences were cloned, of which three were homologous to Bra004162, one was
homologous to Bra001917 and one was homologous to Bra039763. Among them, the amino acid sequence of
PAP1 in B.juncea (zi) and B.juncea (hong) is exactly the same, but there are 22 differences from the amino acid
sequence of B.juncea (lv). Gene expression analysis showed that PAP1 gene and its downstream regulatory genes
are down-regulated in B.juncea (lv), leading to lower anthocyanin content than B.juncea (zi). The up-regulated
expression of BoPAP1 in Brassica oleracea is an important reason for the appearance of purple leaf (Zhang et al.,
2012). Therefore, we speculated that different sequences and expressions of PAP1 gene may lead to the
differences of leaf color in Brassica juncea. The specific mechanism of the appearance of color difference remains
to be further studied.

3 Materials and Methods
3.1 Materials
Brassica juncea with different leaf colors: including B.juncea (lv) (green leaf), B.juncea (hong) (lavender leaf),
B.juncea (zi) (purple leaf). The leaves were provided by the Yan Mingli Laboratory of Hunan Science and
Technology University and grew in the Biological Park of Hunan Science and Technology University. Primer
synthesis, cloning and sequencing were provided by Tianyi Huiyuan Biotechnology Company. Plant DNA
recovery and RNA extraction kits were purchased from Tiangen Biochemical Technology Co., Ltd. pMD18-T
vector was purchased from TaKaRa company. E. coli DH5α strain, PCR and other reagents were purchased from
Sangon Biotech (Shanghai) Co., Ltd.

3.2 Determination of anthocyanin content in different leaf colors
Referring to Li et al. (2016), we took fresh leaves and dried them, then extracted 0.1 g of dried leaves and ground
them into powder to extract anthocyanin. Using a UV spectrophotometer (Agilent Technologies Cary60 UV-Vis)
to measure the absorbance at 530 nm, we calculated the total anthocyanin content in leaves by using the formula:
anthocyanin content (mg/g)=A530×N×10×98.2-1.

3.3 Cloning of PAP1 gene
The young leaves of Brassica juncea with different leaf colors (purple, red, green) at the three-leaf stage were
collected, and the leaf DNA was extracted by the CTAB method. We took the published PAP1 gene sequence
(Bra039763; Bra001917; Bra004162) of Brassica rapa in the Brassica database (http://brassicadb.org/brad/) as a
template, the primers PAP1.1 (Bra039763 homology) PAP1.2 (Bra001917 homology) PAP1.3 (Bra004162
homology) were designed online through the NCBI-BLAST website. The annealing temperature of the primer
was set at 55℃ for 35 cycles. The PCR products were detected by 1% agarose gel electrophoresis, and the results
were observed with a UV gel imaging analyzer. After the PCR product was purified by agarose gel DNA recovery
kit, it was connected to the pMD18-T vector to transform the competent cells of E. coli DH5α. After resuscitation,
plating and colony culture, we marked and picked the scattered and smooth single colonies, and used M13
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universal primers for bacterial liquid PCR, the primer sequence (Table 3). After the positive clones were screened
out, the positive clones were sent to the company for sequencing.

Table 3 Primer names and sequences for gene cloning and expression analysis
Name Forward sequence Reverse sequence Purpose
PAP1.1 AACACTAATCAAGTTCTACAGTCT TCTTTGGTCCATGGAGGATT Homologous clone
PAP1.2 AAGAAACCAGGTACCTCCTAA TAACACTAATCAAGTTCTACAGTCT
PAP1.3 TTCCTCAAGCCTGCCTTTAC ATGTCACGCACAAGCACAAA
M13 CAGGAAACAGCTATGAC GTAAAACGACGGCCAG Colony PCR
qPAP1 GCTTTTAGGAAACAGGTTTG TGAAGGATCGAGGTCGAGGT qRT-PCR
qEGL CTCTCTCCCTAGCGGAATCT GCGAGAAGAGAGCGAGTGAA
qGL3 CCAGCTAATCCTCGGACCAC AGTTTCTCCCGCCGTTTCTT
qTT8 TGGATACTACAACGGCGCAA GGCATCCCAGAAGGAGGTTC
qTT19 AAGGTGGTGATGTGTGGTGTG GGCGTCACATTCTTCGCCTA
qDFR AAGAGACCGTGTGCGTAACC GGCGTCATCGTAGCTTCCTT
Actin TCCATCCATCGTCCACAG GCATCATCACAAGCATCCTT qRT-PCR reference gene

3.4 Bioinformatic analysis of PAP1 gene
We used DNAMAN v.8 software to splice the sequence. According to the Brassica database, we inferred the exon
and intron regions of the sequence and translated it into a protein sequence to predict its isoelectric point. The
online website ProtParam (https://web.expasy.org/protparam/) was used to analyze the amino acid composition
and hydrophobicity of the protein sequence encoded by the PAP1 gene. The MEGA7.0.14 software was used to
compare the PAP1 protein sequence of Brassica juncea with PAP1 homologous sequences of other types of plants,
and constructed a phylogenetic tree. Finally, we used PRABI, SWISS-MODEL, SMART and other websites to
speculate on the secondary structure, tertiary structure and conserved domains of the protein encoded by the PAP1
gene.

3.5 Expression analysis of PAP1 gene
Taking the young leaves of B.juncea (lv) and B.juncea (zi) at the three-leaf stage, extracting the total RNA by
using TRIzol kit, and removing impurity DNA by using RQ1 DNase (promega), we got purified RNA. Then the
quality and concentration of purified RNA were measured under the absorbance of a UV spectrophotometer
A260/A280. And its integrity was check by agarose gel electrophoresis. The obtained RNA was reverse
transcribed with the ReverAidTM First Strand cDNA Synthesis kit to obtain cDNAs in B.juncea (lv) and B.juncea
(zi). Primer software was used to design suitable primers (Table 3), and the Actin gene was used as an internal
reference primer for qRT-PCR amplification to perform gene expression analysis.
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