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Abstract ABI5 plays an important role in many biological processes such as seed dormancy and germination, growth and 
development, anthocyanin synthesis and response to stress. A large number of studies have shown that ABI5 is involved in seed 
dormancy and germination, while few studies have shown that ABI5 is involved in anthocyanin synthesis. In order to explore the 
involvement of ABI5 transcription factors in the regulation of wheat anthocyanin synthesis, the full cDNA length of GzABI5-3A3 
was amplified from a color wheat variety ‘Guizimai 1’. GzABI5-3A3 may be involved in biological processes regulating plant 
growth, photosynthesis, flowering, seed germination and anthocyanin accumulation. Phylogenetic tree analysis showed that 
GzABI5-3A3 was homologous to TaABI5D-SH-31, TaABI5D-SH-23 and TaABI5D-SW-23 in wheat. In this study, the 
overexpression vector of GzABI5-3A3 gene PBI121-GzABI5-3A3 was further constructed for tobacco genetic transformation. 
Eight tobacco transgenic lines were obtained by genetic transformation. Studies on GzABI5-3A3 overexpressed transgenic lines 
showed that the anthocyanin content in seedling leaves of transgenic tobacco lines L4, L7 and L15 was significantly lower than 
that of the wild type, and the expression levels of anthocyanin synthesis pathways of structural genes NtPAL, NtDFR, NtANS and 
NtCHS were significantly decreased. The results showed that GzABI5-3A3 could negatively regulate anthocyanin synthesis by 
regulating the expression of structural genes in anthocyanin synthesis pathway. This study provides a research basis for the 
subsequent research on the molecular mechanism of GzABI5-3A3 regulating anthocyanin synthesis. 
Keywords ‘Guizimai 1’; GzABI5-3A3; Gene clone; Tobacco genetic transformation 

Basic domain leucine zipper (bzip) transcription factors are the most conserved and widely distributed 
transcription factors in eukaryotes, which exists in most eukaryotic cells (Zhang et al., 2017; Cui et al., 2019). In 
plants, according to the structure and function of bzip transcription factors, the family can be divided into 10 
subfamilies (namely A, B, C, D, E, F, G, H, I and S) (Yang et al., 2009), and its recognition core sequence is 
cis-acting elements containing ACGT, such as CACGTG (G box), GACGTC (C box), TACGTA (A box) (Ali et al., 
2016). It was found that the promoter regions of some genes induced by light or abscisic acid (ABA) contain the 
above elements (Zhang, 2018). ABI5 (Abscisic acid insensitive 5) subfamily is a bzip transcription factor induced 
by ABA. It is found that it is closely related to stress resistance of plant (Finkelstein and Lynch, 2000; Zou et al., 
2008). ABI5 can combine with specific cis-acting elements to form a regulatory network to improve the 
adaptability of plants to environmental stress and enable them to regulate their growth under stress. ABI5 plays an 
important role in many biological processes such as seed dormancy and germination, growth and plant response to 
stress. Miura et al. (2009) found that ABI5 inhibited seed germination and the sensitivity of seedling primary roots 
to ABA. Ibarra et al. (2015) found that RGL2 promotes seed secondary dormancy by regulating ABI5 expression 
and ABA synthesis. Guan et al. (2014) showed that ABI5 is an important factor regulating ABA mediated seed 
germination and growth inhibition after germination. Yang et al. (2016) found that in Arabidopsis thaliana (Linn.) 
Heynh., the decrease of sensitivity of BZR1-1D mutant to ABA is mediated by ABI5. Liao et al. (2016) showed 
that ABI5 is involved in regulating the response of Arabidopsis thaliana to pathogens and abscisic acid. In 
addition, ABI5 is also involved in regulating anthocyanin accumulation. Hoth et al. (2010) found that ABI5 in 
Arabidopsis thaliana plays a role in sucrose induced anthocyanin accumulation. After 3% sucrose treatment, the 
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anthocyanin accumulation of ABI5-4 mutant increased, which was related to the increased expression of AtSUC1. 
It has been found that ABA signal induced anthocyanin accumulation in Arabidopsis thaliana seedlings, which 
may be achieved through the synergistic effect of ABI5 and MBW complex. It can be seen that ABI5 can regulate 
the accumulation of anthocyanins by regulating the expression of other anthocyanin related genes, but its 
mechanism needs to be further studied. 

In Triticum aestivum L., ABI5 plays an important regulatory role in the biological processes of ear germination 
(Zhou et al., 2017) and seed dormancy and germination (Sun, 2016; Utsugi et al., 2020). Utsugi et al. (2020) 
obtained TaABI5 full-length linked overexpression vector from Triticum aestivum by amplification to transform 
Arabidopsis thaliana. It was found that the seed dormancy of Arabidopsis thaliana overexpression line was 
stronger than that of wild type. ‘Guizimai 1’ with purple grain was selected by Guizhou Branch of National Wheat 
Improvement Center through distant hybridization of Aegilops tauschii, Triticum ventricosum and Triticum 
turgidum L. var. durum. It has the characteristics of high yield, strong stress resistance and rich anthocyanins (Xu 
et al., 2018). At present, there is no relevant report that ABI5 involves in the regulation of anthocyanin 
accumulation of Triticum aestivum. 

Therefore, we analyzed the biological information and expression pattern of GzABI5-3A3 in ‘Guizimai 1’, and 
further verified the overexpression transgenic tobacco lines in this study, so as to provide a research basis for 
further study on the molecular mechanism of ABI5 transcription factor regulating anthocyanin synthesis. 

1 Results and Analysis 
1.1 Construction of overexpression vector of GzABI5-3A3 gene of ‘Guizimai 1’ 
Using the cDNA extracted from the grain of ‘Guizimai 1’ 25 days after flowering as the template, the full length 
of GzABI5-3A3 sequence was amplified by PCR. A target fragment of more than 1 000 bp was obtained by 1% 
agarose gel electrophoresis (Figure 1) and connected to the overexpression vector pBI121. The plasmid was sent 
to the company for sequencing. The sequencing results showed that the amplified sequence was consistent with 
the sequence of GzABI5-3A3. 

 
Figure 1 PCR analysis of GzABI5-3A3 
Note: M: DL2000 Marker; 1: GzABI5-3A3 amplified product 

1.2 Primary structure and secondary structure of protein encoded by GzABI5-3A3 gene 
Using InterProScan to analyze the protein domain of GzABI5-3A3, it was found that its protein belongs to bzip 
gene family and contains a bzip conserved domain, which is located from 296th amino acid to 362nd amino acid. 
The protein characteristics were analyzed online by ProtPara. Its molecular formula was C1803H2885N533O575S33, 
molecular weight was 42 286.95, isoelectric point was 5.79, instability index was 56.53, fat index was 62.56, 
including 48 negatively charged residues and 39 positively charged residues. By analyzing its hydrophilicity and 
hydrophobicity through ProtScale, the analysis results showed that the average value of protein hydrophobicity is 
-0.501, and the protein instability coefficient is larger than 40, indicating that the protein is in an unstable state, 
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and its average hydrophobicity value is less than 0, indicating that the protein is a hydrophilic protein (Figure 2). 
Using SOPMA tool to analyze the secondary structure, it was found that the secondary structure (Figure 3) is 
mainly α-helix (46.04%) and irregular curl (48.34%), followed by extended chain (4.09%) and β-turn (1.53%). 

 
Figure 2 Hydrophobic, hydrophilic analysis of GzABI5-3A3 

 
Figure 3 The predicated secondary structure of GzABI5-3A3 
Note: Blue is α-helix; Purple is irregular curl; Red is extension chain; Green is β-turn 

1.3 Cis-element of GzABI5-3A3 gene promoter 
In order to further understand the function of GzABI5-3A3 gene, the cis-element of 1 891 bp of the upstream of 
GzABI5-3A3 gene promoter was analyzed. It was found that it contains a variety of cis-elements. In addition to the 
core elements TATA box and CAAT box of the promoter itself, there are also a variety of cis-elements involved in 
various reactions (Table 1). ARE and GC-motif are cis-elements necessary for anaerobic induction; AuxRR-core 
and TGA-element are involved in auxin responsiveness; TATC-box is gibberellin-responsive element; ABRE is 
involved in the abscisic acid responsiveness; CGTCA-motif, TGACG-motif and TCA-element are involved in the 
MeJA-responsiveness and salicylic acid responsiveness; G-Box, TGGC-motif and Sp1 are light responsive 
elements; It also contains a MYB binding site and a MYB recognition site. It can be inferred that GzABI5-3A3 
may be involved in the regulation of the growth, photosynthesis, flowering, seed germination and anthocyanin 
accumulation of plant. 
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Table 1 Cis element analysis of GzABI5-3A3 gene promote 
Name of element Source plant Site Signal sequence Function 
ABRE Arabidopsis thaliana  172, 1 523 ACGTG Cis-acting element involved in the abscisic 

acid responsiveness 
ARE Zea mays L. 241 AAACCA Cis-acting regulatory element essential for the 

anaerobic induction 
AuxRR-core Nicotiana tabacum L. 604 GGTCCAT Cis-acting regulatory element involved in 

auxin responsiveness 
CGTCA-motif Hordeum vulgare L. 155 CGTCA Cis-acting regulatory element involved in the 

MeJA-responsiveness 
G-Box Zea mays L. 171, 685 CACGTT Cis-acting regulatory element involved in light 

responsiveness 
GC-motif Zea mays L. 1 435, 1 605 CCCCCG Enhancer-like element involved in anoxic 

specific inducibility 
GTGGC-motif Hordeum vulgare L. 1 484 CAGCGTGTGGC Part of a light responsive element 
P-box Oryza sativa L.  1 333 CCTTTTG Gibberellin-responsive element 
RY-element Helianthus annuus L. 1 269 CATGCATG Cis-acting regulatory element involved in 

seed-specific regulation 
Sp1 Oryza sativa L.  558, 904 GGGCGG Light responsive element 
TATC-box Oryza sativa L. 230 TATCCCA Cis-acting element involved in 

gibberellin-responsiveness 
TCA-element Nicotiana tabacum L. 1 722 CCATCTTTTT Cis-acting element involved in salicylic acid 

responsiveness 
TGA-element Brassica oleracea L. 1 448, 1 539 AACGAC Auxin-responsive element 
TGACG-motif Hordeum vulgare L. 155 TGACG Cis-acting regulatory element involved in the 

MeJA-responsiveness 
MYB recognition site Arabidopsis thaliana  2 576 CCGTTG - 
Myb-binding site Nicotiana tabacum L. 2 288 CAACAG  - 

1.4 Amino acid homology of GzABI5-3A3 gene 
Phylogenetic tree analysis showed that GzABI5-3A3 has the highest homology with TaABI5D-SH-31, 
TaABI5D-SH-23 and TaABI5D-SW-23 in Triticum aestivum (Figure 4). The results of sequence alignment between 
GzABI5-3A3 and TaABI5D-SH-31, TaABI5D-SH-23 as well as TaABI5D-SW-23 showed that the similarity of 
these four genes was 87.78% (Figure 5). 

 
Figure 4 Phylogenetic tree of GzABI5-3A3 
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Figure 5 Multiple alignment of GzABI5-3A3 with TaABI5D-SW-23, TaABI5-SH-23 and TaABI5-SH-31 in wheat 

1.5 Acquisition and validation of GzABI5-3A3 overexpressed transgenic tobacco plants 
The leaf discs of sterile tobacco seedlings were placed in the co culture medium for dark culture for 3 days, and 
then the co cultured leaves were transferred to the screening differentiation medium for light culture. They were 
subcultured once in 7 days. After callus and 2 cm differentiation buds grew, the differentiation buds were cut and 
transferred to the rooting medium, and transplanted after adventitious roots grew. DNA extraction and PCR 
identification of transformed tobacco were carried out. Wild Nicotiana benthamiana and water were used as 
negative control and bacterial solution as positive control. PCR results showed that the transgenic plants could 
amplify bands with the same fragment size as the bacterial solution, while the negative control could not amplify 
bands (Figure 6), which proved that PBI121-GzABI5-3A3 had been successfully transferred into tobacco, and a 
total of 8 transgenic tobacco strains were obtained. 

 
Figure 6 Validation of GzABI5-3A3 transgenic plants 
Note: M: DL 2000 Marker; OE1, OE4, OE6, OE7, OE11, OE12, OE15, OE22: GzABI5-3A3 overexpressed positive plants; Water, 
WT: Negative control; Bacteria: Positive control 

1.6 Anthocyanin content and gene expression of anthocyanin synthesis pathway in transgenic plants 
The anthocyanin content of three overexpressed transgenic lines L4, L7 and L15 and the wild type were 
determined. The results showed that the anthocyanin content of transgenic plants L4, L7 and L15 were 
significantly lower than that of the wild type (Figure 7). Using overexpressing plants L4, L7 and L15 and wild 
tobacco cDNA as templates, the expression levels of NtPAL, NtCHS, NtDFR and NtANS in tobacco leaves were 
analyzed by qRT-PCR. The results showed that the expression of NtPAL in L4 was significantly lower than that in 
wild tobacco, and the expression of NtPAL in L7 and L15 was extremely significantly lower than that in wild 
tobacco (Figure 8B); The expression levels of NtCHS, NtDFR and NtANS in L4, L7 and L15 were extremely 
significantly lower than those in wild tobacco (Figure 8A; Figure 8C; Figure 8D). 



 
 

 

Molecular Plant Breeding 2022, Vol.13, No.11, 1-11 
http://genbreedpublisher.com/index.php/mpb 

 6 

 
Figure 7 Anthocyanin content in leaves of wild-type tobacco and GzABI5-3A3 overexpressed transgenic tobacco 
Note: WT: Wild type; L4, L7, L15: GzABI5-3A3 overexpressed transgenic plants; * means significant difference (p<0.05), ** means 
very significant difference (p<0.01) 

 
Figure 8 Wild-type tobacco and GzABI5-3A3 overexpressed transgenic tobacco leaves 
Note: A: NtCHS; B: NtPAL; C: NtDFR; D: NtANS; WT: Wild type; L4, L7, L15: GzABI5-3A3 overexpressed transgenic plants; * 
means significant difference (p<0.05), ** means very significant difference (p<0.01) 

2 Discussion 
In this study, the full-length cDNA of GzABI5-3A3 was cloned from ‘Guizimai 1’. Sequence analysis showed that 
GzABI5-3A3 contained a bzip conserved domain, belonging to A subgroup of bzip family. Chang et al. (2019) 
showed that ABI5 is a kind of bzip transcription factor induced by ABA, which not only participates in the 
dormancy and germination of seeds (Sun et al., 2015; Zhao et al., 2016), regulates the growth of plants (Cheng et 
al., 2014; Li et al., 2019; Qi et al., 2020), but also regulates the accumulation of anthocyanins (Hoth et al., 2010; 
Cao and Liu, 2019). An et al. (2017) showed that in apple (Malus pumila Mill.), the bzip transcription factor 
MdHY5 regulates anthocyanin accumulation by regulating the expression of MdMYB10 gene and downstream 
anthocyanin biosynthesis gene. Chen et al. (2020) showed that ABA signal induces anthocyanin accumulation in 
Arabidopsis thaliana seedlings and may regulate anthocyanin synthesis through the synergistic effect of ABI5 and 
MBW complex. Through the cis-element analysis of GzABI5-3A3 promoter, it was found that the GzABI5-3A3 
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promoter region contains MYB binding sites and recognition sites, which was consistent with the research results 
of Chen et al. (2020). It can be speculated that GzABI5-3A3 may bind to MYB transcription factors and participate 
in the regulation of anthocyanin accumulation. 

In order to further verify the function of GzABI5-3A3 in anthocyanin synthesis, the gene was overexpressed in 
tobacco and 8 transgenic lines were obtained. Liu et al. (2018) found that the bzip transcription factor SlHY5 in 
tomato (Lycopersicon esculentum Miller) regulates anthocyanin biosynthesis by binding the G box or ACE motif 
site to the promoters of anthocyanin biosynthesis genes CHS1, CHS2 and DFR. Hoth et al. (2010) found that 
ABI5 mutant can promote anthocyanin synthesis under 3% sucrose treatment, indicating that ABI5 can negatively 
regulate anthocyanin synthesis. In this study, three overexpressed lines L4, L7 and L15 were selected to determine 
their anthocyanin content. The results showed that the anthocyanin content of tobacco leaves of overexpressed 
lines was significantly lower than that of wild type, which was the same as that of Hoth et al. (2010). The gene 
expression of NtPAL, NtCHS, NtDFR and NtANS in anthocyanin synthesis pathway in GzABI5-3A3 
overexpressed line was further studied. It was found that its expression was significantly lower than that of wild 
type. The results showed that GzABI5-3A3 can negatively regulate anthocyanin synthesis by inhibiting the 
expression of structural genes related to anthocyanin synthesis pathway. However, the molecular mechanism of 
how GzABI5-3A3 regulates anthocyanins remains to be further studied. 

3 Materials and Methods 
3.1 Test materials 
The wheat variety ‘Guizimai 1’ with purple grain was selected and preserved by Guizhou Branch of National 
Wheat Improvement Center. It was approved by Guizhou Crop Variety Approval Committee in June 2015 with the 
approval number of Qianshenmai No. 2015003. The seeds of ‘Guizimai 1’ with full grains were planted in the 
Experimental Site of Guizhou Branch of National Wheat Improvement Center (26°25'N, 106°40'E). The ears with 
consistent flowering were selected for listing, marking, continuous observation and recording at the flowering 
stage, and the grains 25 days after flowering were selected as samples. The tobacco used for tobacco genetic 
transformation is Nicotiana benthamiana provided by our central laboratory. 

3.2 Preparation of plant genomic DNA, RNA and cDNA 
TaKaRa MiniBEST Plant RNA Extraction Kit was used to extract total RNA from grains of ‘Guizimai 1’ at 
different stages. The RNA concentration was detected by ultraviolet visible spectrophotometer (Genove Nano), 2 
μL RNA were taken and the quality of RNA was detected by 1% agarose gel electrophoresis. The reverse 
transcription kit PrimeScript™ 1st Strand cDNA Synthesis Kit was used to reverse transcribe the total RNA into 
cDNA and the concentration was detected. 

3.3 Construction of overexpression vector of GzABI5-3A3 
Through the CDS sequence of GzABI5-3A3, the specific amplification primers GzABI5-3A3-F1 and 
GzABI5-3A3-R1 were designed (Table 2). The cDNA obtained by reverse transcription was used as the template 
for amplification. The amplified product was connected to the overexpression vector pBI121, transformed into the 
competent state of Escherichia coli Stbl2, coated on LB solid medium containing kanamycin, incubated in 
darkness at 37℃ for 12~16 hours, and the positive single colony was selected and sent to Sangon Biotech 
(Shanghai) Co., Ltd. for sequencing. After obtaining the correct clone, it was transformed into the competent state 
of Agrobacterium LBA4404 for tobacco genetic transformation. 

3.4 Analysis of GzABI5-3A3 gene sequence and coding protein 
The primary structure, secondary structure and promoter cis-elements of GzABI5-3A3 protein were analyzed by 
online software such as ProtParam, Plantcare, InterProScan and SOPMA. The homologous sequence of 
GzABI5-3A3 was searched by BlastP and BlastX in NCBI. The phylogenetic tree was constructed by MEGA7 to 
determine the highly homologous sequences. The homologous sequences were compared by DNAMAN to 
preliminarily infer the function of GzABI5-3A3. 
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Table 2 primer sequences 

Primer name Primer sequence(5’-3’) Purpose 
GzABI5-3A3-1 F: CGCGGATCCATGGTGTCGGACATGAGCAAG PCR amplification 

R: TCCGGGCCCTCACCAGATGCAGCTAGCGC 
35S F: CCACGTCTTCAAAGCAAGTG Positive plant validation 
GzABI5-3A3-2 R: TCACCAGATGCAGCTAGCGC 
NtActin F: AATGATCGGAATGGAAGCTG Transgenic tobacco qRT-PCR 
 R: TGGTACCACCACTGAGGACA 
NtPAL F: CAAGAACGGTGGTGCTCTTC 
 R: CCAGAACCAACTGCAGTACC 
NtCHS F: GTACAACTAGTGGTGTAGACA 
 R: CCAACTTCACGAAGGTGAC 
NtDFR F: AACCAACAGTCAGGGGAATG 
 R: TTGGGCATCGAGAGTTCCAG 
NtANS F: TGGCGTTGAAGCTCATACTG 
 R: GGAATTAGGCACACACTTTG 
Note: The restriction sites are underlined 

3.5 Genetic transformation of GzABI5-3A3 tobacco 
The young leaves were taken from the upper part of tobacco sterile seedlings, cut into 1 cm×1 cm cubes and 
pre-cultured in MS medium at 28℃ for 3 days, then the pre-cultured leaves were infected in heavy suspension for 
6 minutes, and dark cultured in co culture medium for 3 days. Then the co cultured leaves were placed in 
screening differentiation medium for light culture, subcultured once in 7 days. After callus and 2 cm 
differentiation buds grew, the differentiation buds were cut and transferred to rooting medium, and transplanted 
after adventitious roots grew (Figure 9). 

3.6 Identification of transgenic plants 
DNAsecure Plant Kit (TIANGEN) was used to extract the DNA of transgenic plants. Agrobacterium bacterial 
solution was used as the positive control, and wild Nicotiana benthamiana and water were used as the negative 
control. The primer 35S-F was located on the vector, GzABI5-3A3-R2 was located on the target gene, and the 
amplification length was 1 521 bp. PCR reaction procedure was as follows: 95℃ for 5 min, 95℃ for 30 s, 60℃ 
for 30 s, 72℃ for 90 s, and for 30 cycles, 72℃: 5 min; Store at 4℃. 5 μL PCR products were taken and were 
detected by 1% agarose gel electrophoresis. 

 
Figure 9 Transgenic plants of GzABI5-3A3 
Note: A: Co culture; B: Screening differentiation; C: Callus and growth; D: Rooting culture of differentiation 
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3.7 Determination of anthocyanin content in transgenic plants 
The extraction method of anthocyanins from tobacco leaves adopted the method of Pattanaik et al. (2010). 
Transgenic tobacco leaves grown in the medium for 1 month were used as materials. 

3.8 Expression analysis of anthocyanin synthesis pathway genes in transgenic plants 
The expression levels of NtPAL, NtCHS, NtDFR and NtANS in transgenic tobacco leaves were detected by 
Real-time PCR. Among them, NtActin is an internal reference gene. The reaction system was as follows: 2 μL 
template cDNA, 1 μL upstream primers, 1 μL downstream primers, 12.5 μL SYBRⅡ, and 8.5 μL ddH2O. PCR 
reaction procedure was as follows: 95℃ for 30 s, 95℃ for 5 s, 51℃ for 30 s, for 40 cycles, and each sample 
repeated 3 times. The instrument used was Bio-Red CFX 96 Touch Real-time PCR, and the relative expression 
was calculated by 2-∆∆ct (Livak and Schmittgen, 2001). 
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