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Abstract Cassava (Manihot esculenta Crantz), a perennial shrub but a root crop in Euphorbiaceae, produces a bulk of starch in the
storage roots and serves as a staple food for millions of people in tropical and subtropical regions. Additionally, cassava starch is
widely used in food processing and industrial sectors due to its unique physicochemical properties of swelling and solubility,
gelatinization, retrogradation, pasting, and viscoelasticity. Up to now, the starch biosynthesis and improvement have been well
reviewed by a large number of literatures at different layers and aspects in other plant species/crops but the understanding is limited
in cassava. Therefore, how to increase starch yield and improve starch properties has received great attention. This article briefly
reviews plant starch biosynthesis, and complexity of starch biosynthesis, cases of engineering-based improvement of starch yield and
properties, quantitative trait loci controlling starch yield and properties, challenges of breeding and engineering, and opportunities
and future prospects in cassava.
Keywords Cassava (Manihot esculenta Crantz); Starch biosynthesis; Engineering starch; Starch yield; Starch properties

1 Introduction
Cassava (Manihot esculenta Crantz) is a perennial shrub but a root crop in Euphorbiaceae. This crop serves as a
staple food for millions of people in tropical and subtropical regions because the dry matter in its storage roots
contains more than 80% starch (Alves, 2002; El-Sharkawy, 2004). In addition, cassava can grow on barren and
drought land where other crops fail due to its stronger tolerance to stressful environments (Alves, 2002). Beyond
its role in human nutrition, cassava starch is also a versatile material with a wide range of applications in food
processing and industrial sectors (Tappiban et al., 2019) due to its unique physicochemical properties of swelling
and solubility, gelatinization, retrogradation, pasting, and viscoelasticity (Chisenga et al., 2019). On these ground,
the roles of cassava starch in economic and nutritional value cannot be overstated. Therefore, understanding starch
biosynthesis of cassava is very necessary for tailoring it to specific needs.

Up to now, a large number of in-depth reviews at different layers and aspects have been conducted on the starch
biosynthesis in plants (Martin and Smith, 1995; Hannah and James, 2008; Orzechowski, 2008; Jeon et al., 2010;
Kötting et al., 2010; Stitt and Zeeman, 2012; Bahaji et al., 2014; Saripalli and Gupta, 2015; Tappiban et al., 2019;
Tetlow and Bertoft, 2020; Huang et al., 2021; Li et al., 2021). But, integrative understanding of cassava starch
biosynthesis is relatively limited. Fortunately, the completion of cassava genome sequencing (Wang et al., 2014)
provides an excellent opportunity and foundation for doing this.

Based on our understanding, this brief review is to focus on the biochemical pathways of starch synthesis in and
implications for breeding programs of cassava, only making a start.

2 Outline of Starch Biosynthesis in Plants
Starch biosynthesis in plants usually occurs in the chloroplast of leaves during the day (Martin and Smith, 1995;
Orzechowski, 2008; Stitt and Zeeman, 2012). However, this process is involving multi-step catalytic processes by
multiple enzymes and further complicated due to the transient synthesis that is also present in other organs such as
meristems and root cap cells (Martin and Smith, 1995). No matter how, the key enzymes for starch biosynthesis
are, but not limited to, adenosine 5’-diphosphate glucose pyrophosphorylase (AGPase) responsible for the
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synthesis of ADP glucose, comprising two large (ApL) and two small (ApS) catalytic subunits; starch branching
enzyme (SBE) to produce branches connected by a-1,6-glycoside bonds, including SBEI (SBE1), SBEII, and
SBEIII; starch debranching enzyme (DBE) hydrolyzing -(1,6)-linkages, with three isoforms of isoamylase-type
DBE and one pullulanase-type DBE; soluble starch synthase (SS) catalyzing the transfer of glucose from
ADP-glucose to an acceptor glucan chain and involving solely in amylopectin synthesis, with 4 classes of SSI to
SSIV; granule bound starch synthase (GBSS) involving amylose biosynthesis, with GBSSI and GBSSII;
phosphoglucoisomerase converting fructose 6-phosphate to glucose 6-phosphate; phosphoglucomutase converting
glucose 6-phosphate to glucose 1-phosphate; and starch phosphorylase responsible for glucan-elongation reactions
(Orzechowski, 2008; Keeling and Myers, 2010; Tetlow and Emes, 2014; Li and Gilbert, 2016; Huang et al., 2021).
In these enzymes, AGPase is considered as a rate-limiting enzyme responsible for the synthesis of ADP-glucose in
the first and key step of starch biosynthesis (Ihemere et al., 2006).

3 Complexity of Cassava Starch Biosynthesis
According to current research in other plants, each enzyme has multiple isoforms (Tappiban et al., 2019), and the
enzyme activity and function of the isormors are not entirely the same (Ohdan et al., 2005; Keeling and Myers,
2010; Kötting et al., 2010; Li and Gilbert, 2016; Huang et al., 2021). The expression of some starch biosynthesis
genes such as AGPases have been found in both source (leaves) and sink (seeds) organs of rice, and the gene
expression modes are tissue and developmental stage-specific (Ohdan et al., 2005). The enzymes’ function
depends on the formation of protein complexes (Keeling and Myers, 2010; Cho and Kang, 2020), showing
protein–protein interactions.

Cassava is considered one of orphan crops that are also known as underutilized crops, lost crops, neglected crops,
or crops for the future (Tadele, 2019; Zambrano et al., 2022). The research on genetic background and molecular
mechanisms controlling many traits in cassava is still insufficient. The investigation of the mechanism of cassava
starch synthesis is currently only in the age of enlightenment. The 98 known wild species of the New World genus
Manihot have been found, which are extremely heterogeneous for any particular genotype. Cassava is an
outbreeding species (2n=36 chromosomes) and considered to be an amphidiploid or sequential allopolyploids, and
asexually propagated by mature woody stem cuttings (El-Sharkawy, 2004). Recently, a total of 45 genes
participating in starch biosynthesis in cassava (Tappiban et al., 2019), including AGPase, GBSS, SS, SBE, DBE,
and glucan, water dikinase (GWD). The starch synthesis of cassava may be much more complex than expected
and may also have its unique characteristics. With 6 field-grown cultivars and 1 wild species, we have found that
starch synthesis-related enzymes have multiple active isoforms in cassava. The types of the active isoforms varied
depending on the cultivars. The same active isoforms varied greatly with the roots, stems, and leaves of the same
and different cultivars with the growth stage. What is even more confusing was that it was hard to associate these
corresponding changes with the starch accumulation (unpublished). These factors together will undoubtedly make
cassava starch biosynthesis processes more complex than existing paradigms/frameworks proposed in other plant
species.

4 Cases of Engineering Cassava Starch
Efforts have been made to improve cassava starch yield and alter starch properties by regulating the expression of
starch biosynthesis-related genes through gene engineering, with several cases. Expressing AGPase genes usually
enhances starch production of plants including cassava in most cases but were found to have no impacts on starch
production in rare cases, and even generated unexpected results with respect to yield components including starch
content (Tuncel and Okita, 2013). For example, transgenic cassava expressing AGPase-encoding glgC gene of
bacterial Escherichia coli showed slight decrease in root starch contents (mg per gram fresh weight) (Ihemere et
al., 2006), 151 for wild type cassava and 143 (149 and 138) for transgenic cassava. Overexpressing AGPase gene
in cereals increased starch yield, and meantime, resulted in increases in seed number and plant biomass (Tuncel
and Okita, 2013). Suppression of GBSSI gene expression caused the reduced amylose content but increased values
for clarity, peak viscosity, gel breakdown, and swelling index (Zhao et al., 2011). CRISPR-Cas9-mediated targeted
mutagenesis of PROTEIN TARGETING TO STARCH or GBSS gene reduced or eliminated amylose content in root
starch of cassava (Bull et al., 2018). Silencing expression of SBE1 and SBE2 by short interfering RNAs-mediated
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RNAi produced starch containing up to 50% amylose (Zhou et al., 2020). Three mutants with long fragment
deletions in the second exon of SBE2 showed higher amylose (up to 56% in apparent amylose content) and
resistant starch (up to 35%), and also resulted in starch viscosity with a higher pasting temperature and peak time
(Luo et al., 2022). Simultaneous suppression of both SBE1 and SBE2 endowed cassava with a reduced degree of
polymerization of 6–13 chains in amylopectin (Utsumi et al., 2022b). GWD1-RNAi cassava plants not only
showed both retarded plant and storage root growth, had excess starch accumulation in leaves, and also led to
changes in physico-chemical properties of transient and storage starch (Zhou et al., 2017). MeSSII-RNAi cassava
had an increase in amylose content and presented alterations in starch physicochemical properties in the storage
roots (He et al., 2022). In fact, engineering cassava as well as testing in the field are still in its infancy
(Koehorst-van Putten et al., 2012; Zambrano et al., 2022).

5 Quantitative Trait Loci (QTL) Controlling Starch Yield and Properties
Starch yield and properties are very close but different traits, which are associated with QTLs. The QTLs could be
used for identification of key target genes of interest and for selection of cassava germplasms of desirable traits
for breeding. So far, research on QTL controlling starch yield and properties has not been as extensive as one
might think. Fifteen QTLs associated with starch pasting viscosity were identified by using 100 lines of an F1
mapping population from a cross between two cassava cultivars Huay Bong 60 and Hanatee (Thanyasiriwat et al.,
2014). Total 115 QTLs controlling starch yield and properties on starch content, amylose content, pasting
temperature, thermal and retrogradation, and textural property were reported from 2005-2018 (Tappiban et al.,
2019), with candidate genes. Five QTLs for starch content were identified with 2 cassava cultivars of CI-732
(high dry matter content and starch content) and MNga-1 (low dry matter content and starch content) by simple
interval mapping (Prasannakumari et al., 2021). With a panel of 276 cassava genotypes by using the genome-wide
association study (GWAS), 21 starch pasting property-related QTLs were recently found (Phumichai et al., 2022).

6 Challenges in Engineering Cassava Starch Yield and Starch Properties
Cassava improvement either through conventional cross-breeding or by engineering biotechnologies faces more
rigorous challenges (Otun et al., 2023). After entering the era of omics, many new and powerful genetic
engineering technologies have emerged and are constantly being improved, such as CRISPR/Cas9 for gene editing,
and RNAi and virus-induced gene silencing (VIGS) for suppressing gene expression. Each technology has its own
pros and cons. For all these technologies, the basic principle and requirement is high specificity and precision
(Senthil-Kumar and Mysore, 2011; Ma et al., 2014; Rössner et al., 2022). However, although not all, unexpected
off-target phenomena and non-specific events are also commonly reported. The engineering strategies based on
Agrobacterium-mediated overexpression (Utsumi et al., 2022a), CRISPR/Cas9, RNAi, and VIGS have been used
for cassava improvement and gene function identification research. The challenges are, but not limited to, as
follows.

It is currently not very clear about the chromosomal ploidy and heterozygosity for the vast majority of cassava
cultivars. Cassava materials resulting from natural outcrosses are preferentially retained in the long-term
production and breeding process because larger and much more vigorous cassava materials from outcrosses are
more favored by farmers. Therefore, it can be speculated that most of the cultivars/elite variety should be
heterozygous polyploids. However, such heterozygosity results in wide and unpredictable diversity of phenotypes
that breeders are interested in but farmers dislike in propagation (Ceballos et al., 2004).

The heterozygosity makes it very likely that some key starch biosynthesis genes are in a heterozygous state. For
MeSSI gene, there are 5 heterozygous loci in coding regions in 44 cassava accessions, and 1 heterozygous locus is
in non-coding region in 44 cassava accessions (Vasconcelos et al., 2016). With regard to MeGBSS1 gene, only one
copy is in cassava genome (Tappiban et al., 2019), however, there existed 1 heterozygous locus in coding regions
in 87 cassava accessions, and 5 heterozygous loci were present in non-coding regions in 84 cassava accessions
(Vasconcelos et al., 2016). The MeSBE gene had 1 heterozygous locus in non-coding regions in 280 cassava
accessions (Vasconcelos et al., 2016). In addition, expression of genes encoding starch biosynthesis enzymes, such
as AGPases, shows changes with tissues and growth stages of cassava (Tappiban et al., 2019). All these factors
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will be bound to bring great difficulties to selection in hybrid breeding, and also cause instability of traits of
cassava which is engineered but vegetatively propagated.

In some cases of improving cassava starch yield and properties by key starch synthesis gene, in addition to
expected changes, additional unexpected traits or characteristic changes have also emerged as mentioned above,
indicating that precision and targeting are still problematic. Even though engineered cassava that has been
obtained, it is unclear whether the traits have genetic stability in propagation and production through stem cutting
in the field. Additionally, there seem to be very few cases of cassava germplasm selection/screening with the help
of the currently obtained QTLs. The core functional genes in the QTLs have not been identified yet, expression
regulation mechanisms of which are still unknown.

7 Opportunities and Future Prospects
(1) With regard to cassava materials for engineering cassava and conventional crossing breeding, it is much more
important to develop homozygous, heterozygous, and possibly chimeric lines containing a spectrum of different
starch contents and properties. In this regard, Bull and his colleagues have done an excellent job through targeted
mutagenesis of GBSS or PROTEIN TARGETING TO STARCH1 genes (Bull et al., 2018).

(2) As for enzymes, it is very necessary to conduct identifications of isoforms, active enzyme species and their
activity profiles with tissues and growth stages due to the lack of holographic information in these aspects.

(3) Developing new starch-related QTLs, and integrating QTLs and GWAS data to address expression regulation
of the key genes in QTLs and further understand the functional role of both genotype and phenotype-associated
variations in cassava. These include splicing QTL which is a genetic variant regulating alternative splicing as one
of the major causal mechanisms in GWAS loci (Yamaguchi et al., 2022), and expression quantitative trait loci
which are namely the discovery of genetic variants that explain variation in gene expression levels (Nica and
Dermitzakis, 2013; Joehanes et al., 2017).

(4) Utilizing informative and accurate access maps for engineering cassava. A remarkable research is that the
genome-based reconstruction of starch biosynthesis pathway has been established in the form of an informative
map with all important information of the pathway to investigate the dynamic regulation of starch biosynthesis in
cassava roots, which is available at the Systems Biology and Bioinformatics Research Group’s website
(http://sbi.pdti.kmutt.ac.th/?page_id=33) (Saithong et al., 2013).
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