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Abstract NAC (NAM, ATAF1/2, and CUC2) transcription factors are a class of plant specific transcription factor genes with
numerous family members, commonly found in higher plants, and also found in moss plants. The N-terminus of these genes has a
highly conserved NAC domain. It plays a crucial role in the growth and development of plants, as well as in their response to biotic
stress (such as insects and plant pathogens) and abiotic stress (such as drought, salinity, temperature, and heavy metals). This article
introduces the basic characteristics of the NAC transcription factor family and briefly elaborates on its research in plant stress
resistance in recent years, providing some reference for future research on the stress resistance of NAC transcription factors.
Keywords Transcription factors; NAC gene; Resistance to adversity; Plant

1 Introduction
Plants, as primary producers in ecosystems, have been exposed to a number of unfavorable environments during
their long evolution, mainly including biotic stresses and abiotic stresses. Studies have shown that annual yield
losses due to biotic stresses are estimated to be about 35% and abiotic stresses can lead to more than 50% yield
losses (Mukhtar and Stockle, 2016). In order to survive and reproduce, plants have evolved complex mechanisms
to sense environmental changes and respond adaptively, in which transcription factors play an extremely
important regulatory role.

Transcription factors are a crucial component of gene regulation; they are a set of protein molecules that
specifically bind to particular sequences upstream of the 5' end of genes, ensuring the expression of target genes in
precise temporal and spatial patterns. In plant systems, such molecules play an indispensable role in regulating
plant growth and development as well as adaptive responses to environmental stresses, and NAC, WRKY, MYB,
MYC, bZIP, DREB, and CBF are some of the more common transcription factors. Among them, the NAC
transcription factor family is one of the important transcription factor families in plants, and the name of this
transcription factor family comes from the NAM gene in the Petunia × hybrida hort. ex Vilm, the ATAF1 and
ATAF2 genes in Arabidopsis thaliana, and the CUC2 gene.

In this paper, the basic structural features of the NAC transcription factor family are described in detail, and the
related research progress in plant stress tolerance is sorted out and analyzed in the hope of providing a certain
theoretical basis for the study of stress tolerance of the NAC transcription factor family. There are many members
of the NAC transcription factor family, and each of the members plays a unique function in the response to a
specific biotic or abiotic stress. In recent years, the research on NAC transcription factors has made remarkable
progress in plant stress tolerance. The following table summarizes the functions of different NAC transcription
factors in response to abiotic (Table 1) and biotic (Table 2) stresses in different plants.

2 Characterization of the NAC Transcription Factor Family
The NAC family of transcription factors has a distinctive structural feature (Figure 1), the amino
acid-terminal-containing NAC structural domain, consisting of 150~160 amino acid residues, which is responsible
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for DNA binding and is the basis for the NAC proteins to recognize and bind specific DNA sequences. The
domain contains five subdomains (A to E), including conserved subdomains A, C, and D, and diverse subdomains
B and E. Based on differences in sequence homology, this family can be systematically classified into two major
categories: the first integrates 14 unique subclassifications, counting TERN, ONAC022, SENU5, NAP, AtNAC3,
ATAF, OsNAC3, NAC2, ANAC011, TIP, OsNAC8, OsNAC7, NAC1, and NAM. Different subfamilies of NAC
proteins showed functional specificity. For instance, the ATAF subfamily, also known as subfamily III-1, has been
substantiated through research to have its members extensively involved in various biotic and abiotic stress
responses (Ou et al., 2024); the second group, on the other hand, encompasses four subclassifications, namely
ANAC001, ONAC003, ONAC001 and ANAC063 (Lu et al., 2024).

Table 1 Non biological stress-related NAC transcription factors

NAC gene Stress resistance function Species Literature
ANAC096 Positive regulation of drought tolerance Arabidopsis thaliana (Xu et al., 2013)
OsNAC3 Positive regulation of salt and alkaline tolerance Oryza sativa (Zhang et al., 2021a)
ZmNAC074 Positive regulation of heat resistance Arabidopsis thaliana (Xi et al., 2022)
GmNAC20 Positive regulation of salt and cold tolerance Arabidopsis thaliana (Hao et al., 2011)
CaNAC2 Positive regulation of cold tolerance Capsicum annuum (Guo et al., 2015)
AmNAC24 Positive regulation of cold tolerance Ammopiptanthus mongolicus (Dorjee et al., 2024)
MsNAC001
MsNAC058

Positive regulation of salt alkaline and drought resistance Medicago sativa L. (Min et al., 2020)

Table 2 NAC transcription factors related to biological stress

NAC gene Stress resistance function Species Literature
ANAC019
ANAC055

Changing resistance to gray mold Arabidopsis thaliana (Bu et al., 2008)

GhNAC100 Changing resistance to Dahlia wilt pathogen Cotton (Hu et al., 2019)
TaNAC069 Enhancing resistance to leaf rust fungus Wheat (Zhang et al., 2021b)

The carboxyl-terminus (C-terminus), on the other hand, is the transcriptional activation domain (TAD), which is
less conserved and has a high degree of diversity, and plays a decisive role in the functional specificity of
transcription factors such as activation or repression of gene expression. For example, the five sub-structural
domains (A-E) in Arabidopsis, which are differently conserved, contain multiple chemical modification sites and
hydrophobic regions. Subdomain D may be related to DNA binding and nuclear localization, while the C-terminal
F and G regions may be related to transcriptional activation functions and secondary growth NAC subfamily
delineation (Chen et al., 2009).

Figure 1 Structural characteristics of NAC transcription factors (Adopted from Puranik et al., 2012)
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NAC transcription factors are a family of transcription factors unique to plants and not found in animals or
microorganisms, and the NAC family is one of the largest families of transcription factors in plants, with the
number of members varying greatly among plant species. For example, in Arabidopsis thaliana, about 150 NAC
transcription factors are known; in rice, there are more than 300 NAC family members; and in soybean there are
152 each (Sun et al., 2012); and 163 genes in poplar (Han et al., 2023). The variation in the number of NAC
transcription factor families in different plants not only reflects the differences in genome size and complexity, but
also plays different roles in plant stress response.

3 Role of NAC Transcription Factors in Abiotic Stresses
NAC transcription factors play an important role in abiotic stresses, which mainly include environmental stresses,
including drought, salinity, low temperature, high temperature, heavy metal pollution, ultraviolet radiation, and
nutrient deficiency.

3.1 Drought stress
Drought stress is a phenomenon that affects normal plant growth and development due to a severe shortage of
water content in the soil or a reduction in plant-available water caused by environmental conditions. Studies have
shown that NAC transcription factors play an important role in regulating plant responses to drought stress.

For example, when rice is subjected to drought stress during its reproductive period, overexpression of the stress
responsive gene SNAC1 (STRESS-RESPONSIVE NAC1) can improve the drought tolerance of transgenic rice
and increase the seed setting rate by 22%~34%. During the nutritional growth period, genetically modified rice
also showed excellent drought resistance. Compared to wild-type rice, genetically modified rice has significantly
increased sensitivity to abscisic acid (ABA), and research has found that, The SNAC1 gene is mainly induced and
expressed in guard cells under drought conditions, and its encoded protein is a transcriptional activating NAM
ATAF and CUC (NAC) transcription factors effectively slow down water loss and improve plant drought
resistance by closing stomatal pores more frequently, but this process did not significantly affect their
photosynthesis rate (Hu et al., 2006). And in sweet potatoes, there is a pressure induced IbNAC3, which is a
transcription activator located in the nucleus and contains a unique activation domain that can interact with
ANAC011 The interaction between ANAC072, ANAC083, ANAC100, and NAP enhances plant tolerance to
drought environments in Arabidopsis by overexpressing IbNAC3 (Meng et al., 2022). In addition, SlNAC6
(SlNAC6-RNAi) plays an important role in tomato development, drought stress response, and fruit ripening.
Studies have shown that some of its effects may be achieved through the regulation of ABA mediated pathways.
Overexpression of SlNAC6 leads to a decrease in water loss rate and degree of oxidative damage in tomatoes, as
well as an increase in proline content and antioxidant enzyme activity, thereby improving plant drought resistance
(Jian et al., 2021).

Research has found that six ZmNAC genes found in maize can significantly enhance plant drought tolerance
(Wang et al., 2020a). For example, the ZmNAC48 gene in maize has been shown to enhance drought tolerance in
Arabidopsis. However, this gene has a natural antisense transcript cis NATZmNAC48, which has a negative
regulatory effect on ZmNAC48. When cis-NATZmNAC48 is overexpressed, it interferes with the normal function
of ZmNAC48, thereby affecting the normal closure of maize stomata, leading to a decrease in maize drought
resistance (Mao et al., 2021). In addition, overexpression of the apple MdNAC29 gene reduces the drought
resistance of apple plants, callus tissues, and tobacco, and exhibits higher relative conductivity, malondialdehyde
(MDA) content, and lower chlorophyll content under drought stress (Li et al., 2023). Another study found that
under drought conditions, overexpression of LpNAC13 in lily bulbs in tobacco resulted in a decrease in plant
antioxidant enzyme activity, proline, and chlorophyll content, The MDA content increased, while the results under
salt conditions were opposite to those under drought conditions. Overexpression of LpNAC13 in tobacco reduces
its drought resistance and enhances its salt tolerance (Wang et al., 2020b).

3.2 Salt stress
Salt stress is one of the major abiotic stresses that constrain plant growth and development, and to cope with these
unfavorable factors, plants adopt a series of strategies, such as synthesizing osmoregulatory substances, increasing
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the activity of antioxidant enzymes, and maintaining ionic homeostasis, in order to mitigate the negative effects of
saline stress on their growth and development.

Some of the NAC transcription factors depend on the ABA pathway to regulate salt tolerance in plants. For
example, rice OsNAC3 is an important regulator of ABA signaling response and salt tolerance. the expression of
genes such as Os HKT1;4, Oshkt1;5, Oslea3-1, Ospm-1, Ospp2C68, and Osrab-21 reduced its sensitivity to
abscisic acid and improved plant tolerance to salt stress (Zhang et al., 2021a). Overexpression of GmSIN1 in
soybean promoted root growth and increased yield under salt stress. Its response to salt stress requires rapid
induction of ABA (abscisic acid) and ROS (reactive oxygen species). Further studies revealed that GmSIN1,
GmNCED3s and GmRbohBs synergistically formed a positive feed-forward regulatory mechanism, which
significantly accelerated the process of ABA and ROS accumulation, thereby amplifying salt stress signals and
enabling the plant to respond to and adapt to the salt-stressed environment more rapidly (Li et al., 2019).

Some NAC transcription factors do not rely on the ABA pathway and regulate plant salt tolerance. Overexpression
of Pennisetum glaucum PgNAC21 in Arabidopsis enhances GSTF6 (glutathione s-transfer 6), The expression of
COR47 (cold regulated 47) and RD20 (responsive to dehydration 20) enhances plant salt tolerance (Shinde et al.,
2019). Overexpression of Ts NAC1 gene in Thellungiella salsuginea and Arabidopsis can enhance plant tolerance
to drought, cold, and salt stress, thereby delaying plant growth rate (Liu et al., 2018a). A high salt environment can
also induce the expression of OsNAC071 in rice, thereby improving plant salt tolerance (Liu, 2023).

In addition, salt stress and alkali stress are two different abiotic stresses, but they are often collectively referred to
as salt stress, and alkali stress tends to cause more significant damage to plants (Wang et al., 2017). However,
these two stresses often occur together, and high concentrations of salt and alkaline environments can cause
multiple adverse effects on plant root cells. It was found that LpNACl3 and LpNAC5 could enhance the seed
germination rate under saline and alkaline stress to a certain extent, and significantly enhance the salt and alkali
tolerance of transgenic tobacco seedlings, but would reduce their drought tolerance to a certain extent (Wang,
2020). The transgenic tobacco seedlings were found to be more tolerant to salt and alkali. And this phenomenon
was also reflected in LpNAC6, where antioxidant enzymes (SOD, POD, CAT) activities, chlorophyll content,
proline content and photosynthetic capacity were increased in LpNAC6 transgenic tobacco, while MDA, H2O2

and O2-contents were reduced, which enhanced alkali tolerance, but showed the opposite effect under drought
stress (Yan et al., 2022).

3.3 Temperature stress
Temperature stress refers to environmental temperatures that exceed the optimal growth range of plants, and
includes two main forms of low-temperature stress and high-temperature stress, which can adversely affect plant
growth, development, physiology, and survival. Low-temperature stress is also divided into cold damage
(0 ℃~15 ℃) and freezing damage (below 0 ℃), both of which can cause different degrees of damage to plants,
but the mechanisms are different, with freezing damage involving the formation of ice crystals directly physically
damaging the cells, whereas cold damage leads to damage more through disruption of physiological processes
Cold damage is more likely to result in injury through disruption of physiological processes (Lu et al., 2024).

Overexpression of LlNAC2 in Arabidopsis thaliana enhances the resistance of Lilium lancifolia to cold stress by
participating in the DREB/CBF-COR and ABA signaling pathways in cold stress (Yong et al., 2019). CaNAC064
isolated from pepper leaves has transcriptional activation activity at a critical region of 691~1 071 bp, which can
interact with low-temperature-induced monomeric-type proteases to positively regulate cold resistance in plants
(Hou et al., 2020). At 0 ℃~15 ℃, overexpression of MdNAC104 enhanced the antioxidant enzyme activities of
apple plants and attenuated the damage of PSII, thereby enhancing the cold tolerance of the plants. In addition,
below 0 ℃, overexpression of MdNAC104 in apple plants affected the accumulation pattern of osmoregulatory
substances in the stem and leaves, and improved cold tolerance (Mei, 2023).
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High temperature stress occurs when the ambient temperature reaches or exceeds the maximum temperature
threshold for plant growth. This stress may lead to problems such as reduced photosynthetic efficiency, altered
protein structure, and increased membrane lipid peroxidation in plants, which in turn affects flowering and fruiting
and may cause tissue damage, such as standing wilt in seedlings. It has been found that in response to
high-temperature stress, plants synthesize heat-stimulated proteins (HSPs), which are usually regulated by
heat-stimulated transcription factors (HSFs). NAC019 overexpressed in Arabidopsis thaliana was able to bind to
the promoters of HSFA1b, HSFA6b, HSFA7a, and HSFC1, increasing the heat tolerance of plants (Guan et al.,
2014). Under high-temperature treatment, by transferring the TaNAC2 gene from wheat to Arabidopsis, the
hypocotyl growth length of transgenic TaNAC2LArabidopsis significantly exceeded that of wild-type plants, and
expression levels of six thermally induced genes in Arabidopsis notably surpassed those in the wild type, implying
that TaNAC2L enhances thermal resistance by orchestrating the expression of stress-related genes (Guo et al.,
2015). When overexpressed in transgenic Arabidopsis, ZmNAC074 isolated from corn significantly enhances plant
tolerance to high-temperature environments by regulating various stress metabolites such as reactive oxygen
species (ROS), malondialdehyde (MDA), proline, soluble protein, chlorophyll, and carotenoids (Xi et al., 2022).
The involvement of NAC transcription factors can appropriately regulate the mechanism of plant response to
temperature stress, helping plants to adapt and resist these adverse environmental factors to a certain extent.

In addition, ATAF1 in Arabidopsis thaliana is negatively regulated under high-temperature environment. ATAF1
knockout mutants exhibited better heat tolerance compared to the wild type in the experiment (Alshareef et al.,
2022).

3.4 Heavy metal stress
Heavy metal stress refers to the presence of heavy metal ions in the environment, such as Cd Mn, Pb, Cd, and Hg,
etc, present in the environment at too high a concentration, negatively affect organisms (especially plants). When
these heavy metal ions enter the plant body, they interfere with normal physiological and biochemical processes
and induce a series of defense responses.

Research has found that NAC transcription factors from Aegilops markkrafii can reduce cadmium concentration in
transgenic wheat. Under excessive cadmium treatment, The transcription of AemNAC2 and AemNAC3 is
upregulated approximately 150 times, Overexpression of AemNAC2 in the wheat variety "Bobwhite" leads to a
decrease in cadmium concentration in roots, aboveground parts, and grains (Du et al., 2020). In addition, IDEF2
(Iron deficiency responsive cis acting element 2) in the rice NAC family can maintain Fe stability in rice tissues
(Walker and Connolly, 2008). Another study found that SiNACs in willows exhibit two significant Pb positive
reaction patterns (early and late), both containing 10 SiNACs (Xin et al., 2023). In addition, Overexpression of
TdNAC8470 in rice increased grain starch concentration but decreased grain Fe The content of Zn and Mn may be
involved in regulating grain protein content, starch synthesis, etc. (Gong et al., 2022).

3.5 Others
In addition to the aforementioned abiotic stresses, plants may also face mineral nutrient stress, light stress,
oxidative stress, and mechanical and physical damage. For example, research has found that after dark treatment,
more than 1/4 of NAC expression is increased in Arabidopsis leaves (Lin and Wu, 2004); And under strong light,
ANAC078 can induce genes related to flavonoid biosynthesis, increase the accumulation of anthocyanins, and
cope with high light stress (Morishita et al., 2009). At 0.1% oxygen, The decrease in ANAC102 expression
significantly reduces germination efficiency, but the increase in expression has no effect on germination.
Arabidopsis ANAC102 is an important regulatory factor for seed germination under flooded conditions
(Christianson et al., 2009). Under low phosphorus stress, soybean transcription factor GsNAC1 can regulate the
expression of genes in plant roots, stems, and leaves, enhancing soybean tolerance to low phosphorus soil (Xiong
et al., 2024).
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4 Role of NAC Transcription Factors in Biotic Stresses
Biotic stress is the combined effects of various biological factors that are detrimental to the survival and
development of an organism. These effects usually originate from the activities of other organisms, including
diseases caused by pathogens (e.g., viruses, bacteria, fungi), pest infestation, disturbance by parasitic organisms,
and damage by competing species (e.g., weeds), etc. NAC can be involved in different pathogen stresses in
different plants (Figure 2). There are fewer reports in the existing literature related to the involvement of the NAC
transcription factor family in the biological responses of plants, and there are either positive or negative regulatory
roles of NAC transcription factors in biotic stresses.

Figure 2 The role of NAC transcription factors in biological stress (Adopted from Lu et al., 2024)

During the long evolutionary process of plants, a fine-tuned system of disease resistance defense has been
developed. This system is mainly composed of three disease resistance signaling pathways, namely: a salicylic
acid (SA)-dependent signaling pathway, a jasmonic acid (JA)-dependent signaling pathway, and an
ethylene-dependent signaling pathway (Zhou et al., 2017). Many NAC proteins regulate plant defense responses
to enhance plant disease resistance by activating PR genes, inducing hypersensitive response (HR) and cell death
at the site of infection (Nuruzzaman et al., 2013).

It was found that ONAC122 and ONAC131 were induced to be expressed under the infestation of Botrytis cinerea.
And, ONAC122 and ONAC131 were induced by salicylic acid, methyl jasmonate, or
1-aminocyclopropane-1-carboxylic acid (precursor of ethylene) treatment (Sun et al., 2013). ONAC066 positively
regulates rice resistance to rice blast and leaf blight, and ONAC0666 exerts its disease resistance function by
regulating the ABA signaling pathway, sugar and amino acid accumulation in rice (Liu et al., 2018b). In addition,
by overexpressing the OsNAC60 gene, the transgenic plant exhibit improved resistance to rice blast, whereas
when the miR164a / OsNAC60 regulatory module was dysfunctional, rice was significantly susceptible to
Rickettsia spp. infection. Further studies found that Osa-miR164a, on the other hand, promotes the infection of B.
oryzae (Wang et al., 2018).

Except for rice, some NAC genes of other plants also play an important role in disease resistance response. In B.
juncea, BjuNAC62 Δ C can enhance resistance to the black spot pathogen of Chinese cabbage (Mondal et al.,
2022). The TaNAC069 gene plays a positive regulatory role in the resistance of wheat to leaf rust (Zhang et al.,
2021b). The barley leaf rust resistance gene locus Rph7 has been shown to exhibit abnormally high sequence and
haplotype differences, and it shares structural similarities with the N-terminal DNA binding domain of the NAC
transcription factor (ANAC019) from Arabidopsis, Rph7 is presumed to be a NAC transcription factor (Chen et al.,
2023).
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5 Prospect
Although NAC transcription factors have made significant achievements in the field of plant stress resistance
research, there are still many unknown areas waiting to be explored. In order to gain a more comprehensive
understanding of the molecular regulatory mechanisms of NAC in plants and provide strong support for growth
regulation and stress resistance enhancement, future research can be carried out in the following directions: Firstly,
given the numerous and diverse functions of the NAC family, in-depth research on the interactions and synergistic
regulatory mechanisms among different members will help us to have a more comprehensive understanding of the
role of NAC in plant growth, development, and stress response; Secondly, current research on the role of NAC in
stress response mainly focuses on the nutritional growth stage of plants, with limited understanding of its
regulatory role in the reproductive stage, which will be an important direction for future research; Finally, by
exploring the excellent allele variations of NAC in natural and mutant populations, and exploring their potential
applications in improving crop quality, yield, and stress resistance, new strategies and ideas will be provided for
genetic improvement of crops.

6 Conclusion
NAC transcription factors play a crucial role in the response mechanisms of plants to biotic and abiotic stresses.
They can sense various environmental pressure signals, such as drought, salinity, low temperature, etc., thereby
activating or inhibiting the expression of a series of downstream genes, helping plants adapt to adverse
environmental conditions. This enables us to accurately cultivate new plants with stronger resistance to disease
and stress through transgenic technology.
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