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Abstract Eucommia ulmoides is a tree species with significant medicinal and industrial value. In recent years, some progress has
been made in the genetic improvement of E. ulmoides through the construction of high-density genetic maps and the identification of
massive quantitative trait loci (QTLs). This study focuses on the integrated application of QTL mapping and genomic selection (GS)
in the breeding of E. ulmoides. By integrating current researches, the study analyzes the role of QTL mapping in identifying loci
associated with growth traits, secondary metabolites, and yield, and discusses the potential of applying this information in GS models
to enhance breeding efficiency. The results indicate that combining QTL mapping with GS methods can significantly improve the
accuracy of selecting complex traits and help accelerate the breeding of superior Eucommia varieties. This study provides theoretical
support for future genetic research and breeding strategies in E. ulmoides, promoting the development of varieties with higher
economic and ecological value.
Keywords Eucommia ulmoides; QTL mapping; Genomic selection; Genetic linkage map; Breeding efficiency

1 Introduction
Eucommia ulmoides, commonly known as the hardy rubber tree, is a significant tree species with both economic
and ecological value. It is prized for its applications in pharmacology, landscaping, wind protection, and sand
stabilization (Jin et al., 2020). The tree is notable for producing Eucommia rubber (Eu-rubber), a
trans-polyisoprene that serves as a unique strategic resource in China and can be used as a substitute for natural
rubber (Wuyun et al., 2017; Zhang et al., 2023). Additionally, E. ulmoides is rich in chlorogenic acid and
flavonoids, both of which possess high medicinal value (Xie et al., 2023). Endemic to China, this species has been
classified as a national level II key protected tree species due to its economic and ecological significance (Wang et
al., 2023).

Despite its significance, the breeding and genetic improvement of E. ulmoides face several challenges. One major
issue is the inadequate comprehension of the genetic basis of key traits, which limits efforts to breed varieties with
enhanced yield and quality (Li et al., 2014). The dioecious nature of the species complicates early-stage sex
identification, hindering efficient breeding practices (Wang et al., 2020). Additionally, the lack of a high-quality
genome sequence has restricted both fundamental biological research and applied studies (Wuyun et al., 2017; Li
et al., 2020; Du et al., 2023). Furthermore, the phenotypic variation within and among natural populations poses a
challenge for genetic improvement and resource management (Wang et al., 2023).

Quantitative trait loci (QTLs) mapping is a method used to identify regions of the genome associated with specific
phenotypic traits. This technique is crucial for understanding the genetic architecture of complex traits and for
identifying candidate genes that influence these traits. In E. ulmoides, QTL mapping has been employed to
identify loci linked to growth traits, which is essential for improving breeding efficiency and genetic improvement
at the molecular level (Li et al., 2014; Jin et al., 2020; Liu et al., 2022). GS is a modern breeding approach that
utilizes genome-wide markers to predict the genetic value of individuals in a breeding population. Unlike
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traditional marker-assisted selection, GS considers the effects of all markers across the genome, making it more
efficient for selecting complex traits. Integration GS into E. ulmoides breeding can significantly accelerate the
breeding cycle and enhance the accuracy of selection for desirable traits (Liu et al., 2022). This approach is
particularly advantageous for perennial species like E. ulmoides, where long generation times can impede
breeding progress.

This study explores the application of combining QTL mapping with GS in the breeding and genetic improvement
of E. ulmoides. By integrating and analyzing existing research, we sort out candidate genes and loci linked to key
growth traits and assesses the potential of genomic selection to accelerate the breeding process and enhance the
accuracy of selecting complex traits. This study aims to provide theoretical support for the genetic research and
breeding strategies of E. ulmoides, contributing to the development of superior varieties with higher economic and
ecological value.

2 Genetic Linkage Maps in Eucommia ulmoides
2.1 Development of genetic linkage maps
The construction of genetic linkage maps in E. ulmoides has employed various molecular marker technologies,
including genotyping-by-sequencing (GBS) and traditional marker systems such as sequence-related amplified
polymorphism (SRAP), amplified fragment length polymorphism (AFLP), inter-simple sequence repeat (ISSR),
and simple sequence repeat (SSR) markers. For instance, one study utilized GBS to construct a high-density
genetic map by sequencing an F1 population and identifying single-nucleotide polymorphism (SNP) markers (Liu
et al., 2022). Another study combined SRAP, AFLP, ISSR, and SSR markers to develop a genetic linkage map
from a full-sib family, which encompasses approximately 89% of the estimated E. ulmoides genome (Li et al.,
2014).

There are four types of markers employed in the construction of genetic linkage maps for E. ulmoides. SSR
markers, AFLP markers, SNP (single nucleotide polymorphism) markers, and GBS. SSR markers are highly
polymorphic and have been widely used due to their co-dominant inheritance and reproducibility (Jin et al., 2020;
Li et al., 2014; Wang et al., 2014). AFLP markers are effective for detecting a large number of polymorphisms and
have been utilized in several studies (Aabidine et al., 2010; Li et al., 2014). The first genetic linkage map of
Eucommia ulmoides was developed using a pseudo-testcross strategy with AFLP markers from an F1 population
comprising 122 plants, laying the groundwork for mapping quantitative trait loci and facilitating breeding efforts
(Wang et al., 2014).

Furthermore, through the application of SRAP, AFLP, ISSR, and SSR analyses, a comprehensive genetic linkage
map was established, spanning 2 133 cM and encompassing 25 linkage groups. This map accounts for nearly 89%
of the genome, serving as a valuable resource for identifying quantitative trait loci (QTL) associated with
growth-related characteristics and supporting marker-assisted selection as well as genomic research. SNP markers
have gained popularity due to their abundance and the high resolution they provide in genetic mapping. The use of
GBS has facilitated the identification of a substantial number of SNPs, which are crucial for developing
high-density genetic maps (Jin et al., 2020; Liu et al., 2022).

The coverage and resolution of genetic maps in E. ulmoides have significantly improved through the utilization of
high-density SNP markers. Previous study reported a genetic linkage map covering approximately 89% of the
estimated genome, with an average marker interval of 3.1 cM (Li et al., 2014). Recently, using SNP markers and
GBS technology, Liu et al. (2022) constructed the first high-density genetic map of E. ulmoides, revealing 10 103
SNP markers distributed across 17 linkage groups. The genetic map constructed using GBS covered 90% of the
genome, with a total genetic distance of 4 051.11 cM and an average distance between markers of 0.45 cM (Liu et
al., 2022). These high-density maps offer enhanced resolution, facilitating the precise localization of QTLs.

2.2 Applications in breeding
Genetic linkage maps are invaluable tools for marker-assisted selection (MAS) in the breeding of E. ulmoides.
These maps enable the identification of markers linked to desirable traits, enabling the selection of individuals
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with favorable genotypes. The genetic linkage map developed using SSR and SNP markers has been employed to
identify QTLs associated with growth traits, aiding in the selection of superior genotypes (Li et al., 2014; Jin et al.,
2020).

The identification of QTLs for growth traits in Eucommia ulmoides has been a major focus of genetic mapping
studies. Several QTLs associated with growth-related traits such as tree height, ground diameter, and crown
diameter have been identified. One study detected 44 QTLs for growth traits on various linkage groups, with
phenotypic variance ranging from 10.0% to 14.2% (Liu et al., 2022). Another study identified 89 hypothetical
QTLs for growth traits measured over ten years, highlighting the genetic basis of these traits and providing targets
for MAS (Jin et al., 2020).

3 QTLMapping in Eucommia ulmoides
3.1 Methodologies for QTLmapping
Traditional QTL mapping techniques in E. ulmoides have primarily relied on the construction of genetic linkage
maps using various molecular markers. For instance, a genetic linkage map was constructed using SRAP, AFLP,
ISSR, and SSR markers. The previous map constructed by Li et al. (2014) using aforementioned molecular
markers covered approximately 89% of the E. ulmoides genome, with an average distance of 3.1 cM between
adjacent markers, facilitating the identification of 18 QTLs associated with growth traits. Additionally, another
study refined the genetic linkage map using 452 polymorphic markers from 365 SSR primers, covering 94.10% of
the estimated genome and identifying 89 hypothetical QTLs for growth traits (Jin et al., 2020).

With the advancement of sequencing technologies and decreasing costs, bulked segregant analysis (BSA) and
QTL-seq have emerged as powerful techniques for rapid QTL mapping. BSA involves pooling DNA from
individuals exhibiting extreme phenotypes to identifying significant SNPs associated with the trait of interest. For
example, PyBSASeq, a Python-based algorithm, has been developed to enhance the sensitivity of BSA-Seq,
enabling the detection of SNP-trait associations at lower sequencing coverage and reduced costs (Zhang and
Panthee, 2020). QTL-seq, another analytical method, combines whole-genome resequencing of bulked
populations to identify QTLs, which has been successfully applied to various plant species, including rice, for the
rapidly mapping of QTLs associated with traits such as disease resistance and seedling vigor (Takagi et al., 2013).

3.2 Identified QTLs for key traits
Several studies have identified QTLs associated with growth traits in E. ulmoides. A high-density genetic map
constructed using GBS identified 44 QTLs linked to growth traits on linkage groups LG02, LG06, LG07, LG08,
and LG10, accounting for 10.0% to 14.2% of the phenotypic variance (Liu et al., 2022). Additionally, another
study revealed 25 QTLs for tree height, 32 QTLs for ground diameter, and 15 QTLs for crown diameter,
highlighting the significant correlation of growth traits measured over a span of ten years (Jin et al., 2020).

While the primary focus has been on growth traits, there is also interest in identifying QTLs for secondary
metabolites and yield-related traits. Although specific QTLs associated with these traits in E. ulmoides have not
been extensively reported, methodologies such as QTL-seq and BSA-Seq, which have been successfully applied
in other species, hold promise for future research. For instance, QTG-seq has been utilized to fine-map QTLs in
maize to identify candidate genes for plant height (Figure 1) (Zhang et al., 2019). Similar approaches could be
adapted for E. ulmoides.

3.3 Challenges and limitations
Traditional QTL mapping techniques encounter several limitations, such as the requirement for large populations
and extensive genotyping efforts. The resolution of QTL mapping is frequently constrained by markers density
and the size of the mapping population, which can lead to broad confidence intervals for QTL locations (Li et al.,
2014; Jin et al., 2020). Furthermore, the time-consuming and labor-intensive nature of developing and selecting
DNAmarkers for linkage analysis presents significant challenges (Takagi et al., 2013).
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Figure 1 The underlying principles of QTG-Seq (Adopted from Zhang et al., 2019)
Image caption: QTG-seq consists of three major phases: first, QTL mapping; second, QTL partitioning, in which a numerous number
of segregating BC1F2 populations (totaling over 1 000 individuals) are generated though self-crosses of various BC1F1 individuals
that are heterozygous for the target QTL while being homozygous for the other QTLs; and third, QTG mining, which is characterized
by high-throughput sequencing of bulked samples from the “high” and “low” pools derived from several segregating BC1F2
populations, along with a bioinformatic pipeline for efficient QTG fine-mapping. Notably, the relatively extensive high-throughput
sequencing coverage in relation to the large number of individuals in the bulked samples, combined with the present of
recombination blocks, facilitates precise quantification of A and a alleles frequencies based on random sampling throughout the
high-throughput sequencing process. SNP, single-nucleotide polymorphism (Adopted from Zhang et al., 2019)

To overcome these limitations, there is a need for high-resolution mapping techniques and larger populations.
Methods such as QTL-seq and BSA-Seq offer higher resolution and faster identification of QTLs by leveraging
next-generation sequencing technologies (Takagi et al., 2013; Zhang and Panthee, 2020). These approaches can
significantly reduce the time and cost associated with traditional QTL mapping, making them more accessible for
species with large genomes. Furthermore, integrating multiple progenies and using advanced statistical methods
can enhance the precision and accuracy of QTL detection, as demonstrated in peach breeding (Mora et al., 2017).

4 Genomic Selection in Eucommia ulmoides
4.1 Principles of genomic selection
GS is a form of marker-assisted selection that employs genetic markers covering the entire genome to ensure that
all QTL are in linkage disequilibrium with at least one marker. This method leverages the large number of SNPs
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identified through genome sequencing and advanced genotyping techniques to predict breeding values using
genetic markers alone (Goddard and Hayes, 2007). The process involves estimating the breeding value from
genomic data by calculating the conditional mean of the breeding value given the genotype at each QTL, which is
approximated using marker genotypes.

Traditional MAS has proven effective for traits controlled by major QTLs; however, it encounters challenges
when addressing quantitative traits influenced by multiple minor effect alleles. In contrast, GS estimates all
marker effects simultaneously, thereby capturing the effects of both major and minor QTLs and providing a more
comprehensive prediction model (Heffner et al., 2009; Merrick et al., 2022). This approach mitigates the biases
associated with individual marker effect estimation and accounts for greater variation stemming from small-effect
QTLs, making it more suitable for polygenic traits (Heffner et al., 2009).

4.2 Implementation in breeding programs
Implementing GS in breeding programs involves several key steps. Firstly, collect high-density marker data and
phenotypic data from a training population. Secondly, develop prediction models using the collected data to
estimate marker effects. Then, validate the prediction models with independent test populations to ensure their
accuracy. In the end, use the validated models to predict the breeding values of selection candidates and make
selection decisions based on these predictions (Heffner et al., 2009; Merrick et al., 2022).

GS has been successfully implemented in various plant species, significantly improving breeding efficiency. For
instance, in crop improvement, GS has shown high accuracy in predicting breeding values for polygenic traits,
thereby accelerating the breeding cycle and increasing genetic gains per unit time (Heffner et al., 2009). Moreover,
GS has been applied to perennial ryegrass, where it has demonstrated the potential to predict breeding values with
high accuracy, even for traits with low heritability (Rabier et al., 2016).

4.3 Benefits and challenges
GS offers several advantages over traditional breeding methods. By incorporating all marker information, GS
provides more accurate predictions of breeding values, particularly for polygenic traits (Habier et al., 2007).
Additionally, GS reduces the need for extensive phenotyping in each generation, facilitating faster selection and
breeding cycles. GS also captures the effects of both major and minor QTLs, providing a more holistic approach
to trait improvement (Heffner et al., 2009).

Despite its advantages, GS faces several challenges. Collecting high-quality genotypic and phenotypic data,
essential for developing accurate prediction models, can be resource-intensive (Merrick et al., 2022). Ensuring the
accuracy of these models across different populations and environments requires continuous validation and
updates (Goddard and Hayes, 2007; Heffner et al., 2009). Additionally, maintaining strong linkage disequilibrium
between markers and QTLs over multiple generations can be challenging, affecting the long-term accuracy of GS
(Habier et al., 2007).

Integrating GS into Eucommia ulmoides breeding programs holds significant potential for improving breeding
efficiency and achieving greater genetic gains. However, it is crucial to address the associated challenges and
continuously refine the prediction models to ensure successful implementation.

5 Integrating QTLMapping and Genomic Selection
5.1 Synergies between QTLmapping and genomic selection
Quantitative trait loci (QTL) mapping identifies specific genome regions associated with phenotypic traits,
providing valuable insights into the genetic architecture of these traits. This information is crucial for GS models,
which rely on high-density markers to predict breeding values. Incorporating QTL data allows for the refinement
of GS models by including markers in strong linkage disequilibrium with the QTL, thus improving prediction
accuracy (Goddard and Hayes, 2007; Rabier et al., 2016). For instance, integrating QTL mapping with genomic
best linear unbiased prediction (GBLUP) has been shown to enhance the precision of genomic predictions by
reducing false positives and increasing mapping accuracy (Li et al., 2017).
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Incorporating QTL information into GS models can significantly enhance prediction accuracy by ensuring that the
markers are closely linked to the traits of interest. This approach captures both major and minor genetic effects,
resulting in more reliable breeding value predictions (Goddard and Hayes, 2007; Desta and Ortiz, 2014;
Meuwissen et al., 2021). For example, the StepLMM model, which integrates QTL mapping with GS, has
demonstrated higher prediction accuracy compared to traditional GBLUP models by effectively utilizing
significant SNPs identified through QTL mapping (Li et al., 2017). Additionally, including whole-genome
sequence data in genomic prediction models further improves accuracy by capturing fine-scale genetic variations
(Meuwissen et al., 2021).

5.2 Case studies and examples
Several studies have successfully integrated QTL mapping and GS across various species, demonstrating the
potential of this approach in breeding programs. For instance, in dairy cattle, the combination of whole-genome
sequence data from different breeds and Bayesian genomic prediction has improved prediction accuracies and
enabled the fine-mapping of QTLs associated with milk production traits (Meuwissen et al., 2021). Similarly, in
plant breeding, GS models incorporating QTL information have shown higher prediction accuracies for traits such
as yield and disease resistance (Desta and Ortiz, 2014).

In E. ulmoides, the integration of QTL mapping and GS holds significant promise for improving growth traits and
other economically important characteristics. Recent studies have constructed high-density genetic maps and
identified numerous QTLs associated with growth traits in E. ulmoides (Li and Sillanpää, 2012; Jin et al., 2020;
Liu et al., 2022). Incorporating these QTL data into GS models can improve the accuracy of breeding value
predictions and accelerate the development of superior E. ulmoides varieties. For example, the identification of 44
QTLs related to growth traits provides a solid foundation for implementing GS in E. ulmoides breeding programs
(Liu et al., 2022).

5.3 Future directions
The future of integrating QTL mapping and GS lies in the adoption of emerging technologies and methodologies.
Advances in high-throughput sequencing and genotyping technologies will enable the generation of more
comprehensive genomic data, facilitating the identification of additional QTLs and improving the resolution of
genetic maps (Meuwissen et al., 2021; Liu et al., 2022). Moreover, the development of more sophisticated
statistical models, including those incorporating machine learning algorithms, will enhance the predictive power
of GS models (Li and Sillanpää, 2012; Li et al., 2017).

Integrating multi-omics data, such as transcriptomics, proteomics, and metabolomics, with QTL mapping and GS
represents a promising direction for future research. By combining different layers of biological information,
researchers can achieve a more holistic understanding of the genetic and molecular mechanisms underlying
complex traits (Goddard and Hayes, 2007; Meuwissen et al., 2021). This integrative approach has the potential to
further improve the accuracy of genomic predictions and facilitate the development of more effective breeding
strategies for E. ulmoides and other species (Desta and Ortiz, 2014).

6 Statistical Methods and Tools
6.1 Variable selection techniques
The least absolute shrinkage and selection operator (LASSO) is a widely used method for variable selection in
QTL mapping and GS. LASSO imposes a penalty on the absolute values of the regression coefficients, effectively
shrinking some of them to zero. This results in a sparse model that selects only the most relevant variables.
Generalizations of LASSO, such as elastic net and adaptive LASSO, have been developed to address some of its
limitations. The elastic net combines the penalties of LASSO and ridge regression, which is particularly useful
when dealing with correlated predictors. Adaptive LASSO, on the other hand, assigns different penalties to
different coefficients, offering greater flexibility in variable selection (Li and Sillanpää, 2012; Wimmer et al.,
2013).
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Bayesian methods provide a probabilistic framework for QTL mapping and GS, integrating prior knowledge about
the distribution of QTL effects. Bayesian LASSO, for instance, extends the LASSO method by employing a
Bayesian approach to estimate shrinkage parameters, thereby enhancing the accuracy of QTL detection and
breeding value prediction. Other Bayesian methods, such as BayesA, BayesB, and BayesCπ, have been developed
to address different genetic architectures and marker densities. These methods have demonstrated strong
performance under various conditions, with BayesCπ being particularly recommended when a small number of
loci have large effects on the trait (Clark et al., 2011; Wang et al., 2015).

6.2 Model validation and accuracy
Validating GS models is crucial to ensure their predictive accuracy and reliability. Common validation methods
include cross-validation, which involves dividing the data into multiple training and testing sets to evaluate the
model's performance, and independent testing, where the model is validated using a completely separate dataset.
These methods help evaluate the model’s ability to generalize to new data and avoid overfitting (Goddard and
Hayes, 2007; Li et al., 2017).

Cross-validation and independent testing are essential for evaluating the robustness and accuracy of GS models.
Cross-validation estimates the model's performance by repeatedly splitting the data into training and testing sets,
which helps identify potential overfitting. Independent testing, on the other hand, validates the model on a
separate dataset not used during training, providing a more stringent assessment of the model’s predictive power.
Both methods are critical for ensuring that GS models are reliable and applicable to diverse populations (Goddard
and Hayes, 2007; Li et al., 2017).

6.3 Software and computational tools
Several software tools are available for QTL mapping and GS, each with its own strengths and limitations. Some
of the widely used software includes the following: R/qtl is a comprehensive tool for QTL mapping that supports
various types of genetic crosses and provides a range of statistical methods for QTL analysis. GEMMA is a
software for genome-wide association studies (GWAS) and GS that implements linear mixed models to account
for population structure and relatedness. BGLR is a Bayesian generalized linear regression package in R that
supports various Bayesian methods for genomic prediction, including Bayesian LASSO, BayesA, BayesB, and
BayesCπ (Li and Sillanpää, 2012; Wimmer et al., 2013; Wang et al., 2015).

The increasing availability of high-density marker data presents significant computational challenges for QTL
mapping and GS. These challenges include managing large datasets, ensuring computational efficiency, and
developing robust statistical methods. Addressing these issues requires the development of more efficient
algorithms, the use of parallel computing, and leveraging high-performance computing resources. For instance,
the Stepwise Linear Mixed Model (StepLMM) has been proposed to integrate GWAS and GS into a single
statistical model, improving computational efficiency and accuracy (Eeuwijk et al., 2009; Li et al., 2017).
Additionally, Bayesian methods and penalized regression techniques like LASSO can help manage the complexity
of the data and improve the robustness of the models (Li and Sillanpää, 2012; Wimmer et al., 2013; Wang et al.,
2015).

7 Case Studies in Eucommia ulmoides
7.1 Growth traits
QTL mapping has been extensively used to identify genetic regions associated with growth traits in E. ulmoides.
Jin et al. (2020) constructed a comprehensive genetic linkage map using 452 polymorphic markers, covering
94.10% of the estimated genome (Figure 2). This study identified 25 QTLs for tree height, 32 QTLs for ground
diameter, and 15 QTLs for crown diameter, distributed across various linkage groups. Li et al. (2014) mapped 706
markers across 25 linkage groups, covering approximately 89% of the genome, and identified 18 QTLs explaining
12.4% to 33.3% of the phenotypic variance in growth traits. Additionally, Liu et al. (2022) used GBS to construct
a high-density genetic map and identified 44 QTLs associated with growth traits, with phenotypic variance
ranging from 10.0% to 14.2%.
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Figure 2 QTL mapping on genetic linkage groups for growth traits in E. ulmoides (Adopted from Jin et al., 2020)
Image caption: The red, green and blue bars denote QTLs associated with height, ground diameter and crown diameter, respectively.
The hollow bars represent QTLs for growth rates. The thick bars and thin lines represent 1-LOD and 2-LOD confidence intervals for
each QTL, respectively (Adopted from Jin et al., 2020)

GS models have shown promise in improving growth traits in forest trees, including E. ulmoides. The
effectiveness of GS was demonstrated in Eucalyptus, where prediction models for tree circumference and height
growth achieved accuracies between 0.55 and 0.88, capturing 74%~97% of trait heritability (Resende et al., 2012).
Similarly, Grattapaglia and Resende (2011) highlighted the potential of GS to revolutionize tree breeding by
improving selection efficiency and shortening breeding cycles. These models can be adapted for E. ulmoides to
enhance the accuracy and efficiency of selecting for growth traits.

7.2 Secondary metabolites
Secondary metabolites in E. ulmoides, which are significant in pharmacology, contribute substantially to its
economic value. Although specific QTLs for secondary metabolite content in E. ulmoides were not detailed in the
provided studies, the methodologies used for growth traits can be adapted to identify QTLs for secondary
metabolites. For instance, Jin et al. (2020) and Liu et al. (2022) utilized high-density genetic maps and QTL
analysis to identified QTLs for growth traits, which can be similarly employed to map QTLs for secondary
metabolite content.

GS can significantly enhance the yield of secondary metabolites by capturing the genetic variance associated with
these traits. The principles demonstrated in Eucalyptus for growth and wood quality traits (Resende et al., 2012)
can be extended to secondary metabolites in E. ulmoides. By developing prediction models that incorporate
genome-wide markers, it is possible to improve the selection accuracy for high-yielding genotypes, thereby
accelerating the breeding process for enhanced metabolite production.

7.3 Yield-related traits
Yield-related traits in E. ulmoides are critical for its commercial cultivation. Although the studies reviewed did not
explicitly focus on yield traits, the methodologies used for growth traits can be adapted. For example, Jin et al.
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(2020) and Liu et al. (2022) identified multiple QTLs associated with growth traits, which are frequently
correlated with yield. By extending these QTL mapping techniques, it becomes feasible to identify QTLs
specifically associated with yield and related traits.

Integrating QTL mapping with GS offers a powerful strategy to improve yield in E. ulmoides. The effectiveness of
GS in capturing the heritability of complex traits in Eucalyptus (Resende et al., 2012) and its potential to enhance
tree breeding efficiency (Grattapaglia and Resende, 2011) suggest that similar strategies could be applied for yield
traits in E. ulmoides. By combining QTL information with GS models, breeders can make more informed
selection decisions, resulting in significant improvements in yield and overall breeding efficiency.

8 Practical Implications for Breeding Programs
8.1 Breeding strategies
Integrating QTL mapping and GS in breeding programs for E. ulmoides can significantly enhance breeding
strategies. QTL mapping identifies specific genomic regions associated with desirable traits, such as growth, yield,
and secondary metabolite production, which can be targeted for selection (Li et al., 2014; Li et al., 2015; Jin et al.,
2020; Liu et al., 2022). By combining this with GS, which utilizes genome-wide markers to predict breeding
values, breeders can capture the effects of multiple minor alleles, thus improving the accuracy and efficiency of
selection (Goddard and Hayes, 2007; Grattapaglia and Resende, 2011). This dual approach optimizes breeding
programs by reorganizing field designs, increasing the number of lines evaluated, and leveraging extensive
genomic and phenotypic data across diverse environments to maximize genetic gain (Merrick et al., 2022).

8.2 Economic and ecological impact
The economic and ecological impacts of integrating QTL mapping and GS in the breeding of E. ulmoides are
significant. E. ulmoides is highly regarded for its medicinal properties, rubber production, and ecological
advantages, such as wind sheltering and sand fixation (Liu et al., 2022; Du et al., 2023). Enhanced breeding
strategies can yield superior varieties characterized by higher productivity, enhanced quality, and greater
resistance to environmental stresses, thereby increasing economic returns for farmers and industries (Li et al.,
2014; Li et al., 2015). Additionally, the ecological advantages of E. ulmoides, such as soil stabilization and
biodiversity preservation, can be further enhanced through the cultivation of robust and resilient varieties,
contributing to sustainable environmental management (Jin et al., 2020; Liu et al., 2022).

8.3 Policy and regulatory considerations
The implementation of advanced breeding techniques like QTL mapping and GS in E. ulmoides breeding
programs requires careful consideration of policy and regulatory frameworks. Policymakers must ensure that
regulations facilitate the use of molecular breeding methods while safeguarding genetic diversity and preventing
the monopolization of genetic resources (Merrick et al., 2022). Furthermore, guidelines should be established for
the ethical use of genomic data and the protection of intellectual property rights associated with newly developed
varieties (Grattapaglia and Resende, 2011). Collaboration among researchers, breeders, and regulatory bodies is
crucial to create an environment conducive to the adoption of these technologies, ensuring that the benefits of
improved E. ulmoides varieties are widely accessible and contribute to both economic and ecological
sustainability (Goddard and Hayes, 2007; Grattapaglia and Resende, 2011; Merrick et al., 2022).

9 Concluding Remarks
In this study, we integrated QTL mapping and GS to enhance the breeding efficiency of E. ulmoides. The
construction of high-density genetic maps using SNP markers and GBS has established a robust foundation for
identifying QTLs associated with growth traits. Specifically, a high-density genetic map was constructed, covering
90% of the E. ulmoides genome and identifying 44 QTLs related to growth traits. Furthermore, an updated genetic
linkage map revealed 89 QTLs based on 10 years of growth trait measurements, further elucidating the genetic
mechanisms underlying these traits. The integration of these maps with GS techniques, which utilize
genome-wide markers to predict breeding values, shows promise in improving the accuracy and efficiency of
breeding programs.
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Future research should focus on several key areas to further enhance the integration of QTL mapping and GS in
the breeding of E. ulmoides. Although numerous QTLs have been well identified, their validation across different
populations and environments is imperative to ensure their reliability and applicability in diverse breeding
programs. It will be essential to develop and optimize GS models that incorporate multi-trait and
multi-environment data. This includes utilizing high-throughput phenotyping and deep learning approaches to
improve prediction accuracy. Additionally, identifying and characterizing candidate genes within QTL regions will
provide insights into the biological mechanisms controlling important traits, which can be achieved through
transcriptomic and proteomic analyses. Traditional breeding programs need to be restructured to effectively
implement genomic selection. This includes reorganizing field designs, increasing the number of lines evaluated,
and optimizing training populations.

The integration of QTL mapping and GS represents a significant advancement in the breeding of E. ulmoides. By
combining high-density genetic maps with sophisticated GS techniques, we can achieve more accurate and
efficient selection of desirable traits. This approach not only accelerates the breeding process but also enhances
the genetic gain and overall quality of E. ulmoides cultivars. Ongoing research and optimization in this field will
undoubtedly contribute to the sustainable development and economic viability of this important tree species.
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