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Abstract This study explores the genetic basis of sweet potato (Ipomoea batatas) adaptation, with a particular focus on drought
tolerance mechanisms. Key genes and molecular pathways have been identified that help the plant survive under water stress, thus
facilitating the development of more resilient sweet potato varieties. Recent research has made significant progress in understanding
the genetic mechanisms underlying drought tolerance in sweet potatoes. Recent studies have provided significant insights into the
genetic mechanisms underlying drought tolerance in sweet potato. Transcriptomic analyses have identified thousands of differentially
expressed genes in response to drought stress, with many genes being common across different cultivars and enriched for drought
response-related functions. Specific genes such as [tfWRKY70 have been shown to enhance drought tolerance by regulating ABA
biosynthesis, stomatal aperture, and the ROS scavenging system. Additionally, the overexpression of the /bMIPS] gene has been
linked to improved drought and salt tolerance, as well as resistance to stem nematodes, through the upregulation of stress response
pathways and the accumulation of protective metabolites. Furthermore, alternative splicing events and genotype-specific responses
have been observed, indicating a complex and multifaceted genetic response to drought stress. The findings from these studies
underscore the complexity of drought tolerance mechanisms in sweet potato, involving a wide array of genes and regulatory
pathways. The identification of key drought-responsive genes and their functional roles provides valuable resources for geneticists
and breeders aiming to develop drought-tolerant sweet potato cultivars. These insights not only enhance our understanding of plant
adaptation to abiotic stress but also pave the way for future genetic improvement programs.

Keywords Sweet potato; Drought tolerance; Genetic basis; Transcriptomics; Gene expression; Abiotic stress; WRKY transcription
factor; I/bMIPSI; Alternative splicing; Breeding

1 Introduction

Sweet potato ([pomoea batatas L.) is a crucial crop globally, ranking as the sixth most important food crop
worldwide (Alam, 2021; Escobar-Puentes et al., 2022). It is particularly significant in regions such as China,
which leads its production in a global market valued at USD 45 trillion (Escobar-Puentes et al., 2022). The crop's
versatility and nutritional richness make it indispensable for food security, especially in developing countries.
Sweet potatoes are rich in essential nutrients, including vitamins, minerals, and bioactive compounds, which
contribute to their health benefits and their role in preventing malnutrition (Sun et al., 2014; Alam, 2021).
Additionally, sweet potatoes are known for their drought tolerance, making them a reliable food source in areas
prone to climate variability and water scarcity (Motsa et al., 2015).

Understanding the genetic basis of sweet potato adaptation is critical for enhancing its resilience and productivity.
Genetic adaptation mechanisms enable the crop to thrive in diverse environmental conditions, which is essential
for maintaining food security in the face of climate change (Motsa et al., 2015; Lamaro et al., 2022). Research has
shown significant genetic variability in sweet potato genotypes, which affects traits such as yield, disease
resistance, and nutritional content. By exploring these genetic factors, scientists can develop improved sweet
potato varieties that are more resistant to diseases, such as the sweet potato viral disease (SPVD), and better suited
to different agro-climatic zones (Lamaro et al., 2022). This knowledge is vital for breeding programs aimed at
increasing the crop’s resilience and nutritional value.

This study explores the genetic basis of sweet potato adaptation by reviewing the current knowledge of its genetic
diversity and how it influences phenotypic traits. It investigates the mechanisms of sweet potato adaptation to
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various environmental stresses (e.g., drought and disease resistance) while identifying key genetic markers
associated with target traits that can provide guidance for breeding programs, and also discusses the significance
of genetic research in improving sweet potato varieties with the expectation of enhancing food security and
improving nutritional outcomes.

2 Genetic Diversity and Evolutionary Background

2.1 Origin and domestication of sweet potato

The sweet potato (lpomoea batatas) was domesticated in Central and South America before being introduced to
Africa, where it is now widely cultivated across tropical regions (Glato et al., 2017). The domestication process
involved significant genetic changes, including the integration of Agrobacterium T-DNA sequences into the sweet
potato genome, which suggests that plant-microbe interactions played a crucial role in its domestication. This
natural genetic modification may have provided traits that were selected for during the domestication process,
highlighting the complex evolutionary history of this crop (Kyndt et al., 2015).

2.2 Genetic diversity among different cultivars

Genetic diversity in sweet potato varies significantly across different regions and cultivars. For instance, in West
Africa, genetic diversity is structured into five distinct groups, each associated with specific climatic conditions
and morphological traits (Glato et al., 2017). Similarly, a study in Puerto Rico revealed high levels of genetic
diversity among local landraces, commercial cultivars, and accessions from the USDA repository, indicating a rich
genetic pool that can be leveraged for crop improvement (Rodriguez-Bonilla et al., 2014). The genetic variability
among sweet potato genotypes is also evident in traits such as tuber yield, carotene content, and vine length,
which are crucial for effective crop improvement (Solankey et al., 2015).

2.3 Evolutionary traits that have enabled adaptation

Several evolutionary traits have enabled the sweet potato to adapt to diverse environmental conditions. The
presence of Agrobacterium T-DNA sequences in the sweet potato genome is a notable example, as these
sequences are expressed and may confer advantageous traits that were selected during domestication (Kyndt et al.,
2015). Additionally, the genetic diversity structured along climatic gradients in West Africa suggests that certain
genetic groups are better adapted to specific environmental conditions, such as tropical humid or Sahelian
climates (Glato et al., 2017). The ability of sweet potato to thrive under different climatic conditions is further
supported by the identification of expression quantitative trait loci (eQTLs) that regulate gene expression in
storage roots, which can influence key agronomic traits (Zhang et al., 2020). These evolutionary adaptations
highlight the sweet potato’s resilience and potential for further genetic improvement to enhance climate resilience
and food security (Hancock, 2005; Pironon and Gomez, 2020).

3 Genomic Tools and Resources

3.1 Advances in sequencing technologies for sweet potato

Recent advancements in sequencing technologies have significantly enhanced our understanding of the sweet
potato genome. High-throughput sequencing methods, such as Illumina paired-end RNA-Sequencing, have been
employed to generate comprehensive transcriptomic data. For instance, Illumina sequencing produced 48.7
million 75 bp paired-end reads, which were de novo assembled into 128 052 transcripts, providing a robust
resource for gene expression analysis in sweet potato (Tao et al., 2012). Additionally, single-molecule real-time
sequencing has been utilized to identify full-length cDNAs and alternative splicing events, further enriching the
genomic data available for this hexaploid crop (Ding et al., 2019). These technologies have enabled the
identification of numerous differentially expressed genes and alternative splicing events, which are crucial for
understanding the genetic basis of traits such as stress tolerance and metabolic processes (Ding et al., 2019; Arisha
et al., 2020).

3.2 Overview of available genomic databases and resources
The accumulation of sequencing data has led to the development of extensive genomic databases and resources
for sweet potato. For example, the de novo transcriptome assembly from Illumina sequencing has provided a

comprehensive set of annotated transcripts, including those involved in viral genomes, starch metabolism, and
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stress responses (Tao et al., 2012). Furthermore, genome-wide analyses have identified a vast number of single
nucleotide polymorphisms (SNPs) and expression quantitative trait loci (eQTLs), which are essential for
dissecting the genetic regulation of gene expression in sweet potato (Zhang et al., 2020). The availability of these
resources facilitates the cloning and identification of genes of interest, thereby accelerating research in sweet
potato genomics and breeding (Tao et al., 2012; Zhang et al., 2020).

3.3 The role of bioinformatics in genetic analysis

Bioinformatics plays a pivotal role in the analysis and interpretation of the vast amounts of genomic data
generated from sequencing technologies. Tools such as Blast2GO have been employed to annotate transcripts,
linking them to gene ontology (GO) terms and KEGG pathways, which helps in understanding the functional roles
of genes (Tao et al., 2012). Additionally, bioinformatics approaches are crucial for identifying and characterizing
alternative splicing events, transcription factors, and non-coding RNAs, as demonstrated in studies utilizing
single-molecule real-time sequencing (Ding et al., 2019). The integration of bioinformatics with genomic data
allows for the construction of regulatory networks and the identification of master regulators, such as IbMYB1-2,
which is involved in anthocyanin biosynthesis in sweet potato storage roots (Zhang et al., 2020). These analyses
are essential for uncovering the genetic architecture underlying important agronomic traits and for guiding
molecular breeding efforts (Tao et al., 2012; Ding et al., 2019; Zhang et al., 2020).

4 Key Genes and Pathways Involved in Adaptation

4.1 Identification of genes associated with abiotic stress tolerance (e.g., drought, salinity)

Recent studies have identified several key genes that enhance abiotic stress tolerance in sweet potato. The
[bBBX24-IbTOE3-IbPRX17 module has been shown to improve tolerance to salt and drought stresses by
scavenging reactive oxygen species (ROS) (Figure 1). Overexpression of these genes results in higher peroxidase
activity and lower H>O: accumulation, which are critical for stress response (Zhang et al., 2021). Another
significant gene, IbMIPSI, enhances salt and drought tolerance by up-regulating genes involved in inositol
biosynthesis, phosphatidylinositol (PI) and abscisic acid (ABA) signaling pathways, and the ROS-scavenging
system (Zhai et al., 2016). Additionally, the overexpression of the betaine aldehyde dehydrogenase (BADH) gene
from spinach in sweet potato has been shown to improve tolerance to multiple abiotic stresses, including salt,
oxidative stress, and low temperature, by increasing glycine betaine (GB) accumulation (Fan et al., 2012). The
ItfWRKY70 gene from Ipomoea trifida also plays a crucial role in drought tolerance by regulating ABA
biosynthesis, stomatal aperture, and activating the ROS scavenging system (Sun et al., 2022).

4.2 Genetic basis of resistance to pests and diseases

The genetic transformation of sweet potato has led to the development of varieties with enhanced resistance to
pests and diseases. For instance, transgenic sweet potatoes expressing the endotoxin genes cry8Db, cry7A41, and
cry3Ca have shown lower infestation rates by the sweet potato weevil compared to non-transformed lines.
Additionally, the expression of the oryzacystatin-1 (OC1) gene has conferred resistance to sweet potato stem
nematodes and the sweet potato feathery mottle virus (SPFMV) (Imbo et al., 2016). The /bMIPSI gene not only
enhances abiotic stress tolerance but also significantly improves resistance to stem nematodes by modulating
inositol and ABA signaling pathways (Zhai et al., 2016).

4.3 Pathways influencing growth, yield, and quality traits

Several pathways have been identified that influence the growth, yield, and quality traits of sweet potato. The
overexpression of the /bC3HI8 gene, a non-tandem CCCH-type zinc-finger protein, enhances tolerance to salt,
drought, and oxidative stresses by regulating genes involved in ROS scavenging, ABA signaling, photosynthesis,
and ion transport pathways (Zhang et al., 2019). The WRKY transcription factor tf WRKY70 also contributes to
improved growth and yield under drought conditions by increasing ABA and proline content, and enhancing the
activity of superoxide dismutase (SOD) and peroxidase (POD) enzymes (Sun et al., 2022). Furthermore, the
overexpression of the BADH gene from spinach in sweet potato leads to increased GB accumulation, which helps
maintain cell membrane integrity, stronger photosynthetic activity, and reduced ROS production under stress
conditions, thereby stabilizing yield production (Fan et al., 2012).

353



Molecular Plant Breeding 2024, Vol.15, No.6, 351-361
conorocdrubiser http://genbreedpublisher.com/index.php/mpb

oFw

@)

Ly ¥
=)
]

t weight (g per plant) Plant weight (g per plant) Plant weight (g per plant)

Normal &

3
- ER
+

~%
+

X

B |2

2

=

)
.
= |1
B
B

°

Pl

0

()

WT  OEPI4 OEPIS OEPIS

NaCl ¢
(200 mM)

WI OEP4 OEP1S OEPIS

(20%)

WI OEP14 OEPIS OEPIE

WT OE-P14 OE-P150E-P16 WT OE-P14 OE-P15 OE-P16
Figure 1 IbPRX17 overexpression enhances salt and drought tolerance in sweet potato (Adopted from Zhang et al., 2021)
Image caption: (a) Responses of /bPRX17-OE and wild-type (WT) sweet potato plants grown for 4 wk on Murashige and Skoog (MS)
medium under normal conditions (normal) or subjected to 150 mM NaCl or 20% polyethylene glycol 6000 (PEG6000). (b)
Responses of I/bPRX17-OE and WT sweet potato plants grown hydroponically in half-strength Hoagland solution alone (normal) or
with the addition of 200 mM NaCl or 20% PEG6000. Data are shown as means += SD (n=3). *, P <0.05; **, P<0.01 (significant
difference from the WT at based on Student’s t-tests) (Adopted from Zhang et al., 2021)

5 Molecular Mechanisms of Stress Response

5.1 Mechanisms at the cellular and molecular levels

Sweet potato, like many other plants, employs a variety of cellular and molecular mechanisms to respond to stress
conditions. These mechanisms include the activation of specific genes and proteins that help the plant to cope with
adverse environmental factors. For instance, the expression of certain transcription factors (TFs) such as NAC,
WRKY, and MYB plays a crucial role in the plant's response to abiotic stresses like drought and salinity. These
TFs regulate the expression of downstream genes involved in stress tolerance, including those that manage ion
accumulation, redox reactions, and hormone signaling pathways (Meng et al., 2020; 2022; Sun et al., 2022; Zhao
et al., 2022). Additionally, the plant’s response to potassium deficiency involves significant transcriptional
changes. Genes related to transcriptional regulation, calcium binding, and redox signaling are differentially
expressed under low potassium conditions, indicating their roles in stress adaptation (Wang et al., 2021).
Moreover, miRNAs have been identified as key regulators in the salt stress response, modulating the expression of
target genes involved in stress tolerance (Yang et al., 2020).

5.2 Regulatory networks involved in stress adaptation

The regulatory networks that govern stress adaptation in sweet potato are complex and involve multiple layers of
control, including transcriptional, post-transcriptional, and post-translational modifications. Transcription factors
such as IbNAC3 and IbMYB48 have been shown to interact with other proteins and regulatory elements to
modulate stress responses. For example, IDNAC3 interacts with other NAC TFs to regulate the expression of
genes involved in combined salt and drought stress tolerance (Meng et al., 2022). Similarly, IbMYB48 enhances
salt and drought tolerance by upregulating genes involved in ABA biosynthesis, JA signaling, and ROS
scavenging (Zhao et al., 2022). Furthermore, the integration of various signaling pathways, including those
mediated by plant hormones like ABA, ethylene, and jasmonic acid, plays a pivotal role in coordinating the plant’s
response to stress. These hormones regulate the expression of stress-responsive genes and proteins, thereby
enhancing the plant’s ability to withstand adverse conditions (Golldack et al., 2011; Haak et al., 2017; Wang et al.,
2021).
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5.3 Role of transcription factors and other regulatory elements

Transcription factors are central to the regulation of stress responses in sweet potato. They act as master regulators
that control the expression of a wide array of genes involved in stress tolerance. For instance, the NAC
transcription factor IbNAC3 has been identified as a key player in modulating the plant's response to combined
salt and drought stresses. It activates the expression of downstream target genes and interacts with other NAC TFs
to enhance stress tolerance (Figure 2) (Meng et al., 2022). Similarly, the WRKY transcription factor ItfWRKY70
has been shown to confer drought tolerance by regulating ABA biosynthesis, stomatal aperture, and the ROS
scavenging system (Sun et al., 2022). In addition to TFs, other regulatory elements such as miRNAs also play
significant roles in stress adaptation. miRNAs regulate gene expression at the post-transcriptional level by
targeting mRNAs for degradation or translational repression. For example, miRNAs have been shown to modulate
the expression of genes involved in salt stress response, thereby contributing to the plant’s overall stress tolerance
(Yang et al., 2020).
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Figure 2 IbNAC3 cooperates with ANACO072 and NAP with a synergistic effect on transcriptional activation (Adopted from Meng et
al., 2022)

Image caption: (A) Heatmap showing hierarchical clustering of ChIP-seq peaks comparing transgenic and WT plants, indicating
upregulated (red) and downregulated (blue) regions bound by IbNAC3. Plants were immunoprecipitated with an anti-Flag antibody,
and the DNA-protein complexes were analyzed. (B) Schematics of AtCHX25, AtRH33, and MRELS57 gene structures, highlighting
core NACRS regions (red and blue) and exons (green), with distances from the ATG start codon marked. (C) ChIP-qPCR assays
showing in vivo binding of IbNAC3 to the promoters of target genes, with significant enrichment compared to the WT. (D) Yeast
one-hybrid assays confirming the physical interaction between IbNAC3 and the promoters of AtCHX25, AtRH33, and MRELS57,
validated on selective media. (E) Electrophoretic mobility shift assay (EMSA) illustrating in vitro binding of purified IDNACS3 to the
promoters, showing specific DNA-protein complexes. (F) Diagrams of dual-luciferase reporter (DLR) constructs, showing promoters
cloned into the reporter vector and effector constructs of IbNAC3, ANACO072, and NAP. (G) Transactivation assay results
demonstrating that IDNAC3 activates transcription of the target promoters in Nicotiana benthamiana, as indicated by increased
LUC/REN ratios. (H) Synergistic interaction between IbNAC3 and ANACO072/NAP further enhances the transactivation activity of
the target gene promoters, with statistical analyses supporting significant interactions (Adapted from Meng et al., 2022)
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6 Case Studies

6.1 Examples of specific sweet potato cultivars adapted to harsh environments

Several studies have identified sweet potato cultivars that exhibit remarkable adaptability to harsh environmental
conditions. For instance, in Tanzania, the genotypes G2 (Resisto x Ukerewe), G3 (Ukerewe x Ex-Msimbu-1), G4
(03-03 x SPKBHO008), G12 (Ukerewe x SPKBHO008), and G18 (Resisto x Simama) have shown high yields, high
dry matter content, and resistance to sweet potato virus disease (SPVD) across diverse environments (Ngailo et al.,
2019). Similarly, in Indonesia, the genotypes Ayamurasaki, Beniazuma, Awachy2, 15(112), Awachy4, Awachy5,
80(109), 54(160), and 35(180) have been identified as specifically adapted to marginal lands based on
Finlay-Wilkinson analysis (Mustamu et al., 2018).

In Colombia, the genotype 0113-672COR was selected for the Caribbean region due to its superior multi-trait
performance and stability across multiple environments (Rosero et al., 2023). Additionally, a study in Cameroon
identified high-yielding and stable sweet potato clones suitable for major cultivation areas, despite the significant
genotype-by-environment interactions observed (Ngeve, 2004). These examples highlight the potential of specific
sweet potato cultivars to thrive in challenging environments, contributing to food security and agricultural
sustainability.

6.2 Insights from recent studies on gene-environment interactions

Recent studies have provided valuable insights into the gene-environment interactions that influence sweet potato
adaptation. For instance, a transcriptomic analysis of the US-bred cultivar Beauregard and the Ugandan landrace
Tanzania under dehydration stress identified approximately 4 000 to 6 000 differentially expressed genes in each
cultivar, with many genes associated with drought response (Lau et al., 2018). This study highlighted the
genotype-specific responses to drought stress, which can inform the development of drought-tolerant cultivars.

Another study emphasized the importance of understanding the genetic mechanisms underlying drought tolerance.
It reviewed the physiological, metabolic, and genetic modifications that sweet potato plants employ to respond to
water stress, such as activating antioxidants and accumulating stress proteins (Sapakhova et al., 2023). These
modifications can serve as indicators for selecting drought-tolerant genotypes.

Furthermore, a study on the ecophysiological and morpho-agronomic parameters of sweet potato genotypes from
different altitudes revealed significant variability in their responses to low-altitude conditions. Genotypes with
greater soil coverage efficiency and leaf size exhibited better photosynthetic performance and water use efficiency,
which are crucial for root formation under low-altitude environments (Figure 3) (Burbano-Erazo et al., 2020).
These findings underscore the complex interactions between genetic traits and environmental factors in sweet
potato adaptation.
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Figure 3 Relationship between genotypes with storage roots and without storage roots according to Pn and altitude. Pn: Net
photosynthetic rate; masl: meters above sea level (Adopted from Burbano-Erazo et al., 2020)
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7 Future Directions and Challenges

7.1 Potential of CRISPR and other gene-editing tools in sweet potato breeding

The advent of CRISPR/Cas9 and other gene-editing technologies has revolutionized plant breeding, offering
precise and efficient methods to modify genetic material. In sweet potato breeding, CRISPR/Cas9 has shown
promise in improving starch quality by targeting specific genes involved in starch biosynthesis, such as IbGBSSI
and IbSBEII (Wang et al., 2019). This technology allows for the introduction of desirable traits without the
integration of foreign DNA, which is crucial for regulatory approval and public acceptance (Hameed et al., 2019;
Veillet et al., 2019). Additionally, CRISPR/Cas9 can be used to enhance resistance to biotic and abiotic stresses,
thereby improving crop resilience and yield (Biswas et al., 2021; Nascimento et al., 2023). The potential of
CRISPR and other gene-editing tools in sweet potato breeding is vast, offering opportunities to accelerate the
development of improved cultivars with enhanced nutritional quality and stress tolerance.

7.2 Challenges in translating genetic insights into practical breeding solutions

Despite the potential of gene-editing technologies, several challenges remain in translating genetic insights into
practical breeding solutions. One major challenge is the genotype-dependency of transformation protocols, which
affects the efficiency and success rate of gene editing in different sweet potato varieties (Nahirfiak et al., 2022).
Additionally, the regulatory landscape for gene-edited crops is complex and varies across regions, posing hurdles
for the commercialization of gene-edited sweet potatoes (Hameed et al., 2019; Dev et al., 2021). Another
challenge is the need for robust and efficient delivery systems for CRISPR/Cas9 components, as well as the
development of marker-free strategies to avoid the integration of foreign DNA (Veillet et al., 2019; Tussipkan and
Manabayeva, 2021). Furthermore, public perception and acceptance of gene-edited crops remain critical issues
that need to be addressed through transparent communication and education (Chen et al., 2019).

7.3 Opportunities for integrating genomic data with traditional breeding methods

Integrating genomic data with traditional breeding methods presents a significant opportunity to enhance sweet
potato breeding programs. By combining genomic selection with conventional breeding techniques, breeders can
more accurately predict and select for desirable traits, thereby accelerating the breeding process (Dangol et al.,
2019; Nascimento et al., 2023). The use of high-throughput sequencing and genotyping technologies enables the
identification of genetic markers associated with important traits, facilitating marker-assisted selection (Chen et al.,
2019; Biswas et al., 2021). Additionally, integrating genomic data with phenotypic data can improve the
understanding of complex trait architectures and gene-environment interactions, leading to more targeted and
efficient breeding strategies (Wang et al., 2019; Tussipkan and Manabayeva, 2021). This integrative approach
holds the potential to develop sweet potato cultivars with improved yield, quality, and stress resilience, ultimately
contributing to food security and sustainable agriculture.

8 Conclusion

Recent studies have significantly advanced our understanding of the genetic basis of sweet potato adaptation.
High-throughput sequencing technologies have provided comprehensive genomic resources, revealing gene
expression patterns across different tissues and developmental stages. Genome-wide analyses have identified
numerous single nucleotide polymorphisms (SNPs) and expression quantitative trait loci (eQTLs) that regulate
gene expression in sweet potato storage roots, highlighting key regulatory genes such as /bMYBI-2 involved in
anthocyanin biosynthesis. Additionally, the identification and characterization of SWEET family genes and
R2R3-MYB gene family members have elucidated their roles in sugar transport, stress responses, and anthocyanin
accumulation. Studies on the wild ancestor, [pomoea trifida, have further contributed to understanding the genetic
diversity and evolutionary history of sweet potato.

The insights gained from these genetic studies have significant implications for sustainable sweet potato
production. Understanding the molecular mechanisms underlying stress tolerance and nutrient accumulation can
inform breeding programs aimed at developing more resilient and nutritious sweet potato varieties. The
identification of key regulatory genes and pathways involved in biotic and abiotic stress responses can lead to the
development of sweet potato cultivars with enhanced resistance to pests, diseases, and environmental stresses.
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Moreover, the comprehensive genomic resources and gene expression data provide valuable tools for
marker-assisted selection and genetic engineering, facilitating the improvement of sweet potato yield and quality.

Future research should focus on further elucidating the functional roles of identified genes and their interactions in
sweet potato adaptation. Functional validation of candidate genes through gene editing and transgenic approaches
will be crucial to confirm their roles in stress tolerance and nutrient accumulation. Additionally, expanding
genomic studies to include more diverse sweet potato cultivars and wild relatives will enhance our understanding
of genetic diversity and adaptation mechanisms. Integrating multi-omics approaches, such as proteomics and
metabolomics, with genomic data will provide a more comprehensive understanding of the molecular networks
governing sweet potato adaptation. Finally, translating these genetic insights into practical breeding strategies will
be essential for developing sustainable sweet potato varieties that can thrive in diverse environmental conditions.
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