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Abstract With the integration of molecular breeding techniques and digital platforms, the global breeding ecosystem is undergoing
a fundamental shift-from fragmented outsourcing services to platform-based, intelligent collaboration. As a critical interface
connecting research institutions, enterprises, and regulators, breeding CROs (Contract Research Organizations) are evolving from
experimental executors into integrated service hubs characterized by standardization, regulatory compliance, and Al-enabled
intelligence. This paper proposes a triadic capability framework encompassing standardized workflows, full-spectrum compliance
governance, and intelligent system integration. It diagnoses structural challenges such as the lack of service standards, regulatory
mismatch, data fragmentation, and shallow application of Al tools. Furthermore, the study outlines actionable strategies for platform
development, including modular SOP libraries, embedded compliance pipelines, data-driven Al middle platforms, and collaborative
visualization dashboards. The paper concludes by envisioning an Al-powered transformation of breeding services and recommends
advancing institutional pilots, platform certification standards, and Al governance mechanisms to establish CROs as credible,
intelligent, and open infrastructure in global breeding innovation.

Keywords Breeding CRO; Standardized services; Intelligent platform; Regulatory compliance; Artificial intelligence; Data
interoperability; Digital breeding infrastructure

With the deep integration of molecular breeding and digital technologies, the global bio-breeding system is
undergoing a profound transformation from tool integration toward platform-based collaboration. Its core
characteristics are reflected in the synergistic evolution of molecularization, intelligence, and systemization. On
the one hand, the continuous decline in the cost of genome sequencing and multi-omics technologies has
promoted molecular design breeding as a key paradigm for the development of new varieties. Molecular marker
technologies represented by SNPs, together with genomic selection models, have significantly improved the
efficiency of trait identification and genetic improvement (Xu et al., 2017). On the other hand, breakthroughs in
gene-editing technologies such as CRISPR/Cas have provided highly efficient tools for the targeted modification
of functional genes, markedly accelerating the creation of elite traits (Razzaq et al., 2021). Meanwhile, the
widespread application of remote sensing, sensors, and high-throughput phenotyping platforms has enabled
phenotypic data acquisition to become large-scale and real-time, driving breeding into an intelligent stage under
the impetus of artificial intelligence and big data (Zhu et al., 2024).

To address the increasing complexity of R&D processes as well as the growing pressures of quality control and
regulatory compliance, the CRO (Contract research organization) model has begun to be rapidly adopted in the
field of bio-breeding. Originating from the pharmaceutical sector, CROs are a form of specialized service
organization that enhance R&D efficiency and reduce compliance risks for innovation entities through
standardized workflows, professional teams, and auditable systems. Existing studies indicate that
breeding-oriented CROs can effectively address inefficiencies caused by fragmented resources, non-standardized
processes, and regulatory pressures in traditional breeding systems, and have become an important pillar of
modern breeding systems (Fang and Liang, 2026).

Building upon previous systematic analyses of the evolutionary pathways and platform models of breeding CROs,
this study further focuses on the construction of a future-oriented service platform architecture (Fang and Liang,
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2026). At present, while breeding CRO platforms are developing rapidly, they also expose structural challenges
such as the lack of unified service standards, insufficient regulatory adaptability, and unclear pathways for digital
transformation. These issues urgently require breakthroughs in institutional design and system-level capabilities.

This study focuses on three key future directions for breeding CROs-standardization, compliance, and
intelligence-and aims to systematically propose a theoretical framework and practical pathways for
platform-based CRO services.

Standardization: By establishing unified SOP and GLP systems applicable across species and scenarios, service
consistency and data reproducibility can be enhanced (Liang and Zhou, 2012); Compliance: By strengthening
regulatory adaptation and risk control capabilities in areas such as transgenic technologies, gene editing, biosafety,
and data governance; Intelligence: By integrating AI models with high-throughput experimental systems to build
data-driven intelligent decision-making platforms, thereby improving the efficiency and responsiveness of
breeding services.

Through these pathways, this study seeks to provide a replicable structural solution for breeding CRO platforms to
evolve from a “technology execution-oriented” model toward a “system empowerment-oriented” model, and to
offer theoretical support and applied demonstrations for quality governance, resource allocation, and the
translation of science and technology in modern seed industries.

1 Diagnosis of Industry Status and Challenges

1.1 Lack of standardization impedes mutual recognition of services

The breeding CRO industry is currently in a developmental stage characterized by “multiple isolated initiatives
and fragmented governance.” Most institutions lack unified standards in experimental workflows, data collection,
field trial management, and quality control systems. Significant disparities exist in GLP (Good laboratory practice)
and SOP (Standard operating procedure) frameworks, making service outputs difficult to compare, reuse, and
reproduce across organizations (Liang and Zhou, 2012; Van Etten et al., 2023). This fragmentation not only
constrains the professionalization of CROs but also hinders their integration into domestic and international
regulatory and accreditation systems, thereby affecting high-end clients’ confidence in data reliability (Lassoued
et al., 2018; Menz et al., 2020).

By contrast, institutions such as the United States Department of Agriculture (USDA) and the European Food
Safety Authority (EFSA) have implemented explicit quality standards and regulatory interfaces for outsourced
agricultural R&D services. CRO services in Europe and North America commonly adopt systems such as
ISO/IEC 17025 and OECD GLP, enabling cross-border data recognition. In comparison, China still lacks an
industry-wide standard framework tailored to breeding services, and this absence of standards has become a major
bottleneck constraining the upgrading of breeding CROs.

1.2 Weak compliance systems generate high risks

At present, most breeding CROs have not established systematic compliance management mechanisms covering
the entire lifecycle of “pre-experiment-in-experiment-post-experiment” activities. Compliance risks are
particularly prominent in areas involving genetically modified organisms (GMOs), gene-edited materials,
biosafety, and material transfer. Standardized procedures aligned with regulatory authorities (e.g., the Ministry of
Agriculture and Rural Affairs, USDA, EFSA) are often lacking, as are enforceable systems for NDAs, MTAs, and
intellectual property allocation (Purnhagen and Wesseler, 2020; Qaim, 2020).

Compliance challenges are further amplified in international collaborative projects. Globally, regulatory
approaches to new breeding technologies differ substantially: the United States tends to adopt a product-based
regulatory approach, whereas the European Union emphasizes process-based regulation and applies particularly
stringent oversight to GMOs (Davison and Ammann, 2017). Such regulatory divergence makes experimental data
difficult to mutually recognize across regions and increases the regulatory interpretation costs and operational
complexity of CRO services (Menz et al., 2020; Qaim, 2020). Therefore, establishing compliance systems aligned
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with both domestic and international regulations is a critical prerequisite for breeding CROs to sustainably
participate in global collaborations.

1.3 Data silos constrain the release of intelligent potential

With the rapid accumulation of multi-dimensional data-including phenomics, genomics, and enviromics-the “data
organization capability” of breeding CRO platforms is gradually replacing traditional “experimental execution
capability” as the core source of competitiveness. In practice, however, molecular assay data, phenotypic data,
trial management records, and compliance documents are typically dispersed across disparate systems, with
inconsistent standards and non-uniform formats, preventing cross-platform sharing and reuse (Fernandez et al.,
2020; Mahmood et al., 2022).

Due to the lack of unified data interfaces and platform architectures, most CROs are unable to support continuous
iteration of machine learning models or conduct large-scale, multi-year, and multi-crop data training. This
limitation directly hinders the practical deployment of intelligent functions such as Al-assisted breeding design,
trait prediction, and experimental optimization (Yan and Wang, 2022; Van Etten et al., 2023).

Leading international organizations have begun to develop integrated platforms that unify data acquisition, quality
control, compliance documentation, and client interfaces. For example, the CGIAR in the United States and the
EU’s EJP Soil program are promoting interoperability among agricultural data platforms to enhance data openness
and reuse value. These experiences demonstrate that building open, standardized, and intelligent data
infrastructures is a key direction for the digital transformation of future breeding CROs.

1.4 Ambiguous terminology and regulatory boundaries undermine industry recognition

At present, there is no globally consistent definition of “breeding CRO,” making it difficult to clearly distinguish
it from general technical outsourcing services, public breeding platforms, and trial contracting organizations. Both
academia and industry have yet to reach consensus on critical issues such as the division of responsibilities
between “contract research” and “collaborative trials,” data ownership, and intellectual property management
(Lassoued et al., 2018).

At the international level, agencies such as the U.S. Environmental Protection Agency (EPA) and USDA have
clarified service qualification requirements, data usage rules, and reporting standards for outsourced services in
areas such as pesticides and genetically modified crops. However, in the field of bio-breeding, the role of CROs
has not yet been systematically incorporated into regulatory frameworks due to the immaturity of emerging
technologies and evolving regulations. As a result, breeding CROs are often overlooked in terms of policy support,
accreditation, and public funding, weakening client recognition and trust in their role (Qaim, 2020; Van Etten et
al., 2023). Therefore, establishing a clear terminology system and regulatory interface framework is a prerequisite
for the industry’s transition from fragmented service provision to a platform-based industrial model.

2 Platform Construction Recommendations: Reshaping the Future-Oriented Capability
System of Breeding CROs

2.1 Core platform architecture: a problem-oriented “three-in-one” capability framework

Challenges and Issues: Existing breeding CRO platforms commonly suffer from fragmented capabilities and
disconnected workflows. Standardization, compliance, and intelligence are often developed in isolation, lacking
systemic integration. As a result, platforms struggle to support multi-project parallel operations and cross-regional
collaboration.

Development Pathway: Future-oriented breeding CRO platforms should establish, at the top-level architectural
design, a “three-in-one” capability framework consisting of standardized service processes, full-lifecycle
compliance management, and intelligent system integration (Figure 1). Within this framework, the three
capabilities should co-evolve synergistically within a single platform, rather than being implemented as linear or
additive components (Ezzelle et al., 2008; Smulders et al., 2021; Xu et al., 2022).
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This framework emphasizes three key principles:
(1) Standardization as the foundation, addressing the problem of non-reusable processes;
(2) Compliance as the boundary, addressing the problem of non-auditable outcomes;

(3) Intelligence as the amplifier, addressing the problem of data that cannot be transformed into decision-making
insights.

Together, these three dimensions constitute the core capability combination that distinguishes platform-based
breeding CROs from traditional technical outsourcing organizations.

End-to-end compliance
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Figure 1 A triadic structural model of the breeding CRO capability system
Figure caption: An integrated triad of capabilities for future-oriented breeding CRO platforms. The diagram illustrates three essential
capability modules for breeding CROs: standardized service processes (e.g., SOP/GLP compliance), end-to-end regulatory
compliance (covering GMO/IP standards), and intelligent system integration (Al-driven data analytics). These elements interact to
form a closed loop of standardization, compliance, and intelligence, enabling data-driven, auditable, and scalable operations across
diverse breeding projects and scenarios

2.2 Building standardization capacity: from fragmented processes to replicable service modules

Challenges and Issues: Although many breeding CROs have established SOP or GLP systems, these are often
project-specific and customized, making them difficult to reuse across different crops, teams, and regions. As a
result, standardization has not been effectively translated into scalable capabilities.

Development Pathway: Standardization efforts should shift from a document-oriented approach to a
module-oriented approach by constructing a combinable and iterative SOP module library centered on key nodes
of the breeding workflow (Figure 2).

At the platform level, SOPs should be abstracted and designed along the following dimensions, rather than
repeatedly listing detailed operational steps: Breeding stage dimension (germplasm creation, population
development, selection and evaluation, regional trials); Experimental type dimension (molecular assays,
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phenotypic evaluations, multi-location trials); Risk level dimension (routine experiments, controlled experiments,
biosafety-related experiments).

Through an iterative mechanism of “pilot implementation-evaluation-version updating,” SOPs can be transformed
from one-off specifications into a “living document system.” When linked with the quality management system,
this approach enables closed-loop management of execution, deviation, and continuous improvement (Kendall et
al., 2016; Gumba et al., 2018).

Standardizing SOPs: from fragmented workflows to modular service modules

[ Fragmented SOPs ]

v

Modular service modules

Experimental type dimension| Breeding stage dimension Risk level dimension

* Molecular testing * Material development * Routine trials

* Phenotypic assessment * Population construction * Regulated trials
* Multi-site trials * Trait evaluation * Biosafety trials

* Regional trials

Iteratlve process

Pi lot Evaluation Update

Figure 2 Modular pathway for standardized capability development in breeding CROs

Figure caption: This figure illustrates the transformation of breeding CRO standardization from fragmented, project-specific SOPs to
a modular and reusable service framework. By consolidating individual SOPs into a modular SOP library and abstracting them across
breeding stages (material development, population construction, trait evaluation, and regional trials), experimental types (molecular
testing, phenotypic assessment, and multi-site trials), and risk levels (routine, regulated, and biosafety-related trials), standardized
workflows are converted into scalable service modules; The iterative cycle of pilot-evaluation-update highlights the role of SOPs as a
“living document system,” enabling continuous improvement, quality assurance, and cross-project reproducibility within
platform-based breeding CROs

2.3 Building compliance capacity: from passive response to embedded governance

Challenges and Issues: Current compliance systems in breeding CROs are largely concentrated on GMO-related
projects and rely heavily on manual, experience-based judgment. Such approaches are insufficient to address the
systemic risks arising from cross-jurisdictional collaboration, cross-border data flows, and complex intellectual
property arrangements.

Development Pathway: Compliance capacity should be upgraded from an “external requirement” to an
“endogenous platform mechanism.” By embedding institutional rules, operational processes, and technological
tools in a coordinated manner, breeding CROs can achieve replicable and auditable compliance outputs.

At the level of institutional design, it is recommended that platforms adopt a dual-layer structure consisting of a
general compliance backbone and scenario-specific adaptation pathways:
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General backbone: material source verification-risk classification-trial approval-environmental monitoring-result
archiving; Scenario-specific adaptation: loading differentiated regulatory requirements according to target markets
(China, the United States, the European Union) (Turnbull et al., 2021; Mu et al., 2025).

At the execution level, NDAs, MTAs, and IP clauses should be bound to specific experimental workflow nodes.
Through digital systems, permission controls, audit trails, and document generation can be automatically triggered,
thereby reducing uncertainty arising from human operations (Figure 3) (Tekic et al., 2023).
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Figure 3 Embedding compliance: from reactive response to embedded governance

Figure caption: This diagram illustrates the transformation of compliance management in breeding CRO platforms from reactive
response models to embedded governance systems. It highlights a dual-layered structure-generic compliance workflows and
scenario-specific adaptations-supported by digital execution mechanisms including automated audit trails, permission control, and

document generation

2.4 Building intelligent capabilities: from data accumulation to decision empowerment

Challenges and Issues: Although breeding CROs have accumulated large volumes of molecular, phenotypic, and
environmental data, these data are often fragmented in structure and difficult to reuse across projects. As a result,
intelligent applications frequently remain at the level of “tool adoption” rather than delivering integrated decision
support.

Development Pathway: The development of intelligent capabilities should center on a platform-level data middle
layer rather than isolated Al applications.

The platform should prioritize three foundational tasks:
(1) Unifying data models to enable structured integration of genotype-phenotype-environment data;

(2) Introducing Al analysis interfaces for trait prediction, combination optimization, and experimental design
recommendations;
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(3) Deploying visualization dashboards to translate analytical outputs into interpretable and actionable decision
information (Han et al., 2020; Copland et al., 2024).

On this basis, breeding CROs can evolve from “experimental executors” into “intelligent decision-support

>

providers,” significantly enhancing their strategic position within collaborative innovation systems (Sumathi,
2025). As illustrated in Figure 4, intelligent capability development can achieve a transition from data
accumulation to intelligent decision-making through the integrated construction of a data middle layer, Al

analytical interfaces, and visualization dashboards.

From data accumulation to intelligent ddecision support

Integrated al-driven
breeding CRO
data platform

4 Y N N\
Unified data model AT analytics interface Decision-making visual dashboard
* Genotype data * Trait prediction « Results interpretation
* Phenotype data » Combination optimization « Scenario comparison
« Environment data * Trial design recommendation « Decision support
Structured & integrated Real-time algorithm Impact analysis &
G x E data integration processing actionable outputs
N AN J J

« Strategic planning  * Trait selection  * Trial design

From experiment executors to intelligent decision partner

Figure 4 Pathway for developing Al capabilities: from data accumulation to intelligent decision support

Figure caption: Figure 4 illustrates the pathway for developing intelligent capabilities in breeding CRO platforms. It emphasizes the
transformation from fragmented data integration, standardization, and modeling to the deployment of Al interfaces for trait prediction,
optimization, and trial design. Finally, the use of visual dashboards enables actionable decision support. This framework empowers
breeding CROs to shift from data collectors to intelligent decision enablers

2.5 Platform capability maturity model
To prevent platform construction from remaining at a purely conceptual level, this study proposes a Breeding
CRO Capability Maturity Model (Table 1) to guide phased development and evaluation.

Table 1 Maturity model for breeding CRO platforms

Maturity level Standardization capability =~ Compliance capability — Intelligent capability Platform feature
. . . Experience-based
Level 1 initial stage Fragmented SOPs Manual compliance Isolated data analysis .
operations

Level 2 defined stage  Basic SOPs Streamlined compliance Centralized data storage  Single project support

level 3 integrated ) Embedded compliance Data-Driven decision Concurrent project
SOPs+GLP compliance

Stage workflow Hub management

Level 4 intelligent L Cross-jurisdiction Al-Enabled decision international  service
Cross-institutional SOPs }

stage Compliance support platform

The model illustrates the evolutionary pathways of platform capabilities across three dimensions-standardization,
compliance, and intelligence. The four maturity levels, ranging from Initial to Intelligent, reflect systematic
improvements in service workflows, data management, and platform governance. This framework facilitates the
assessment of the relative positioning of different breeding CROs in terms of service systematization,
digitalization, and internationalization. Overall, the model provides breeding CROs with a clear roadmap
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addressing the questions of “where they come from, where they are going, and how progress should be
evaluated.”

2.6 Summary: from capability accumulation to system evolution

By reconstructing platform architecture in a problem-oriented manner and integrating standardization, compliance,
and intelligence into a unified capability system, breeding CROs can achieve a transition from “project-based
services” to “platform-based infrastructure.” This transformation not only addresses current industry
fragmentation and compliance pressures but also lays a solid foundation for breeding CROs to assume
higher-level roles within the global bio-breeding innovation ecosystem.

3 Integration of Intelligence and Digital Platforms: Service Reshaping from Algorithms to
Systems

3.1 Functional evolution of ai in the breeding service value chain

As bio-breeding enters an era driven by multi-omics and data proliferation, the role of artificial intelligence (Al)
in breeding services is evolving from a “point-based tool” into a “decision engine,” spanning the entire process
from sample collection and phenotypic analysis to complex trait modeling and breeding pathway optimization (Xu
et al., 2022; Zhu et al., 2024). To enable the true integration of Al into service platforms, technological iteration
alone is insufficient; deep coupling with existing information systems-such as LIMS, ELN, and phenotypic
recognition systems-is also required to form complete data closed loops and feedback mechanisms (Figure 5).

Evolution of Al capabilities in breeding services

= > gy
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Data collection Data sructuring Data visualization
* SOP/GLP-compliant « Standardization * Interactive/responsive
trials and annotation dashboards
* High Throughput multi * Cross-platform * Real-time interpretation
source sensor systems data integration and display
Studium supportive Color-phase DII systems Transform and cross systems
Data-driven support Intelligent decision Prediction optimization

Figure 5 Evolution of ai capabilities in breeding services

Figure caption (APA format): This figure illustrates the evolution of Al capabilities in breeding services, highlighting a progressive
pathway from data collection (e.g., SOP/GLP-compliant trials and multi-source sensing systems), through data structuring
(standardization, annotation, and cross-platform integration), to data visualization (interactive dashboards and real-time displays).
The bottom sequence demonstrates how Al capabilities transition from data-driven support to intelligent decision-making and
predictive optimization-serving as a foundational framework for building future-oriented breeding CRO platforms. (This figure was
generated with Al assistance)

(1) From “data acquisition” to “structured modeling”: integration pathways for intelligent phenotyping systems

In breeding services, phenotypic data collection has long relied on manual operations, characterized by strong
subjectivity and poor reproducibility. In recent years, phenotyping platforms based on deep learning combined
with sensor networks (such as OpenPheno and PhenoBox) have enabled automated measurements of multiple
crops under diverse environmental conditions (Ampatzidis and Partel, 2019; Hu et al., 2025). By integrating
unmanned aerial vehicle (UAV) multispectral imaging, ground-based rail systems, and environmental sensor
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networks, and linking them to internal LIMS/ELN systems, a standardized data pipeline encompassing
“acquisition-storage-modeling-feedback” can be established.

For example, BASF’s TraitMill platform directly pushes sensor-derived data-such as canopy structure, leaf area,
and disease indicators-into an analytical data hub, enabling parallel modeling and differential detection of multiple
traits. This integration model based on standardized interfaces allows phenotypic data to be used not only for
real-time analysis but also as a stable input source for AI model training.

(2) From ““trait prediction” to “multi-objective optimization”: building decision support engines

Complex traits (e.g., yield and stress tolerance) are influenced by polygenic effects and genotype-environment
interactions, making them difficult to analyze using traditional methods. AI models-particularly ensemble learning,
graph neural networks, and explainable AI approaches-have demonstrated the ability to jointly model
high-dimensional traits and perform optimized ranking across multiple objectives (Cheng and Wang, 2024; Zhou
et al., 2024).

Within Corteva’s Enterprise Breeding System (EBS), Al models are used to evaluate the expected performance of
tens of thousands of breeding lines across diverse environments in real time, providing optimal combination
recommendations for each selection cycle. Such systems are often integrated with GIS platforms to incorporate
field-level  soil, moisture, and pest risk indicators, thereby enabling truly integrated
“environment-genotype-phenotype” three-dimensional modeling.

In addition, in maize breeding programs targeting smallholder farming systems, federated learning models have
been used to enable shared model training across multiple low-resource countries. This approach has significantly
improved selection efficiency for traits related to marginal environment adaptation, demonstrating Al’s
adaptability under globally imbalanced data conditions.

(3) From “Breeding Pathway Simulation” to “Strategic Design”: Supporting Forward-Looking Decision-Making
Traditional breeding often lacks mechanisms for dynamically evaluating the long-term impacts of strategic
decisions. Contemporary Al systems can now construct in silico breeding platforms, leveraging genomic
estimated breeding values (GEBVs), multi-generation simulations, and constraints on genetic diversity
maintenance to generate intelligent recommendations for parent selection, mating strategies, and generation
advancement (Farooq et al., 2024; Zhu et al., 2024).

These systems can be integrated with front-end experimental design modules of CRO platforms, forming
closed-loop linkages with trial databases and phenotypic feedback systems. This enables full-process support for
“simulation-execution-correction,” thereby establishing a continuous optimization cycle grounded in real-world
feedback.

3.2 Deep integration of platform architecture and Al systems

The development of intelligent platform capabilities is often constrained by the problem of “algorithm silos.” To
address this, Al should be embedded into existing management systems, operational workflows, and user
interaction interfaces to form a complete service value chain.

(1) Modular design: supporting multi-crop and multi-task heterogeneous configurations

To accommodate diverse application requirements, platforms should adopt a microservices architecture to deploy
different Al modules (e.g., phenotypic recognition, trait prediction, simulation and recommendation).
Containerized deployment can support flexible invocation across crops and projects (Varshney et al., 2016; Zhao
et al., 2022).

For example, the “Golden Seed Cloud” platform decomposes molecular marker analysis, field image processing,
and Al recommendation functions into reusable modules. Through a flowchart-style, “building-block”
configuration interface, users can rapidly assemble multi-task workflows (Zhu et al., 2024). This model
effectively lowers the entry barrier for platform services and improves cross-project replication efficiency.
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(2) Standardized interfaces and system interoperability: connecting nodes across the ecosystem

LIMS, ELN, sensor systems, and phenotyping platforms are often developed by different vendors, resulting in
inconsistent data standards. Breeding CRO platforms should build API frameworks around international standards
such as BrAPI and MIAPPE, unifying invocation logic and reducing integration costs (Sempéré et al., 2019).

For instance, OpenPheno achieves seamless connectivity with external phenotyping platforms and data hubs via
BrAPI, while the EBS system integrates with enterprise platforms such as SAP and ArcGIS, enabling project
management, environmental data, and financial controls to operate within a unified environment.

(3) User-centered collaborative visualization platforms

Algorithmic capabilities only create value when they are effectively used by end users. Platforms should provide
visual dashboards combined with collaborative operation interfaces to enable graphical outputs for trial progress
tracking, environmental response analysis, and model prediction results (Zhao et al., 2022).

Platforms such as OpenPheno and PhenoApp already offer components including heat maps, timelines, and GIS
layer overlays, supporting result sharing and online discussion among project members. This design is particularly
suited to breeding project teams operating across multiple locations and roles, enabling cross-regional
collaboration while maintaining effective access control and data security.

3.3 Building Al-driven “system-level platform service capabilities”

The development of intelligent platforms should not be regarded merely as a technological upgrade, but rather as a
systematic reshaping of the service paradigm of breeding CROs. Such platforms must simultaneously possess the
following three categories of capabilities:

Capability Type Core Functions Example Platforms / Technologies

Data collection & Automated sensor-based data acquisition, LIMS management, o
o Traitmill, Openpheno
management metadata standardization

. ) Multi-trait prediction, genetic gain simulation, GXE modeling and
decision analysis support ) EBS, CropGPT
strategy recommendations

User collaboration Visual dashboards, real-time logs, role-based access control, .
. T . . Jinzhong cloud, PhenoApp
interface cross-institutional project collaboration

In the future, breeding CRO platforms should follow a pathway of data interconnection, model-driven intelligence,
and service collaboration to build intelligent hubs with continuous learning capabilities, platform openness, and
international adaptability, thereby truly realizing a transformation from “experimental outsourcing” to
“co-construction of intelligent breeding ecosystems.”

4 Conclusion: Future Pathways for Platform-Based Breeding CROs

4.1 Role transformation of cro platforms: from service outsourcing to breeding infrastructure

With the explosion of multi-omics data, increasing experimental complexity, and the rapid diffusion of digital
tools, breeding CROs are gradually transforming from traditional “outsourced service providers” into core nodes
within breeding systems. In the future, breeding CROs characterized by platformization, intelligence, and high
compliance will become digital infrastructure and collaborative innovation hubs within the global seed innovation
ecosystem. Their role will extend beyond experimental execution and data analysis to connecting research
institutions, enterprises, regulatory agencies, and international partners, thereby supporting complex breeding
projects involving multiple environments and stakeholders worldwide (Xu et al., 2022; Zhu et al., 2024). Within
this positioning, CRO platforms must establish end-to-end capability loops encompassing data integration,
intelligent decision-making, experimental execution, and compliance support, thereby driving genetic gain while
providing a robust technological foundation for global food security and sustainable agriculture.

4.2 Institutional support and industry standards: building a trustworthy operational foundation
Although breeding CROs continue to evolve in terms of technology and organizational form, their long-term,
healthy development remains highly dependent on institutional and standard-based support. The industry currently
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faces widespread challenges such as fragmented workflows, inconsistent quality standards, and incompatible data
interfaces, which severely constrain platform interoperability and service scalability (Brookes and Smyth, 2024;
Panwar et al., 2025). Addressing these challenges requires action along two dimensions. First, at the industry level,
unified SOP repositories, standardized data structures, and quality control indicator systems should be established
to achieve service standardization and process transparency. Second, at the regulatory level, “breeding CRO
regulatory sandboxes” should be introduced to clearly define data compliance boundaries, rules for Al tool usage,
and platform certification mechanisms, thereby providing controlled environments and institutional safeguards for
platform innovation (Alexander et al., 2023; Goktas and Grzybowski, 2025). Only through the coordinated
advancement of policy guidance and industry collaboration can breeding CROs form a trustworthy ecosystem
characterized by high quality, auditability, and mutual recognition.

4.3 Al-driven capability leap: toward an era of intelligent and collaborative breeding

The core engine of future breeding CRO development will be intelligent tool systems represented by artificial
intelligence. From phenotypic recognition and trait prediction to genetic optimization and virtual breeding
pathway simulation, Al is increasingly being embedded across all stages of breeding services (Zhou et al., 2024).
However, the true value of Al can only be realized when it is deeply integrated with foundational infrastructures
such as LIMS, ELN, and sensor systems, and embedded within user decision-making workflows. Accordingly,
CRO platforms should evolve from “Al tool application” to “Al-driven platform construction,” forming intelligent
systems in which data and models co-evolve, and algorithms and experiments are tightly coupled. On this basis,
comprehensive lifecycle Al governance frameworks-covering algorithm interpretability, model fairness,
accountability in decision-making, and ethical boundaries-must also be established to ensure the sustainability and
trustworthiness of Al applications (Shahriar et al., 2023; Al-Kfairy et al., 2024).

Future research may further explore the role of CRO platforms in multi-stakeholder collaborative breeding
mechanisms, particularly their strategic functions in data sharing, cross-border compliance, and the construction
of joint innovation networks.
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Appendix

Appendix A Proposed framework for certification standards of breeding CRO platforms

Certification Key indicators Evaluation method Notes/Remarks

dimension

Service capability Timeliness of trial execution; reproducibility Quantitative scoring Can be evaluated by third-party
verification pass rate; client satisfaction (0-5) assessors or via client feedback

Data quality Data completeness; metadata richness; Automated Supported by automated quality
missing data control mechanisms; error rates validation+expert review assessment tools

Degree of SOP documentation coverage; version Document Relies on  evaluation of

standardization control mechanisms; deviation records and auditt+system-generated standardized SOP management
corrective actions comparison reports systems

Compliance capability GLP compliance level; completeness of audit Checklist inspection+ Includes GMO and data
trails; data access control management; expert review compliance requirements
incidence of compliance events

Level of intelligence ~ Number of Al tools embedded in workflows; Model evaluationt+system Requires submission of
model performance (AUC/accuracy); functionality review real-world application cases
availability of explainability tools and model documentation

Innovation capacity =~ Frequency of adoption of new technologies; Expert scoring Reflects platform-driven
participation in open-source initiatives; +literature/patent review research and innovation
outputs in publications/patents capacity

Notes: It is recommended that this framework be developed with reference to international certification and standards systems such
as ISO/IEC 17025, OECD GLP, and FAIR data principles, and progressively evolve into a hybrid mechanism combining industry
self-certification and third-party independent auditing
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Appendix B Recommended items for breeding service platform regulatory sandbox mechanism

Pilot theme

Core testing content

Expected policy output and goals

Al-based decision tools and
algorithm traceability

Data  cross-border flow
testing

SOP and electronic record

compliance
contract template
compatibility testing
mechanism
Al  training and data
labeling risk review
mechanism

Scope of model use, clarification of attribution

and liability, application boundaries of
evaluation materials and Al
Multi-location data sharing, crop data

cross-border transfer, data security flow
Metadata, signatures, and traceability under the
electronic recording framework

Agreement signing process, version consistency,
data authorization and sharing

Type of datasets used for training, data labeling

quality and audit process, and sensitive

information filtering

Determine whether Al-based evaluations, risk
assessments, and test recommendations can be used
for submission materials

Develop classification management and approval
rules for data crossing borders

Assess whether electronic records comply with data
integrity reporting effectiveness

Promote cross-institution agreement templates for

data, IP, and MTA models

Establish an Al sandbox framework for “Trustworthy
AI” governance

Note: The regulatory sandbox is recommended to be led by the ministry of agriculture and rural affairs or by local pilot zones or free

trade zones in conjunction with the ministry of science and technology's regulatory divisions. Reference can be made to best

practices from the financial technology, medical Al, and other sectors

Appendix C Al governance evaluation framework (Applicable to breeding CROs)

Governance dimension

Indicators or tools

Evaluation notes

Model performance

Robustness Multi-environment data, Performance across
environments

Explainability SHAP values, Feature importance ranking

Fairness and Coverage of underrepresented  varieties,

inclusiveness representation of marginal traits

Compliance and Data

privacy differential privacy, access control
Traceability and Model versioning, training records, task
reproducibility accountability

AUC, RMSE, Accuracy, Precision, Recall

Existence

Evaluated based on context; model performance

metrics should match the complexity and scale of

application scenarios

Evaluates whether outputs

Assesses stability under different conditions and
ecological scenarios

are interpretable and

understandable by non-Al experts

of user agreements/training,

Evaluates whether model overlooks rare traits or
species, or reinforces biased decisions

Ensures data security and ownership compliance in
sensitive contexts like genetic and farmer data

Assesses whether model development process and
outcomes are fully traceable and reproducible

Notes: It is recommended that this type of indicator system be used as an evaluation reference for breeding platforms participating in

national projects, international collaborations, or industry fund-supported projects-thus promoting the transition of Al governance

from corporate self-discipline to regulatory coordination
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