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Abstract The study explored the utilization of various molecular markers to classify and understand the phylogenetic relationships
among Oryza species. The genus Oryza, which includes the globally significant crop rice (Oryza sativa), comprises 22 species with
diverse genetic backgrounds. This research evaluates the effectiveness of different molecular markers, including SNPs, AFLPs,
ISSRs, and microsatellites, in revealing genetic diversity and phylogenetic relationships. SNP markers, particularly those developed
using DArTseq technology, have shown high efficiency in species identification and quality control genotyping. AFLP markers have
been instrumental in elucidating the polyphyletic evolution of Oryza, indicating multiple independent lineages. ISSR markers have
provided insights into the genetic diversity and evolutionary pathways of various Oryza genomes. Microsatellite markers, especially
those derived from miRNA genes, have proven to be highly polymorphic and useful for genotyping applications. The study
underscores the importance of integrating multiple molecular markers to achieve a comprehensive understanding of the genetic
diversity and evolutionary history of Oryza species, which is crucial for effective germplasm conservation and breeding programs.
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1 Introduction
The genus Oryza, encompassing both wild and cultivated rice species, is of paramount importance in global
agriculture. Rice (Oryza sativa) serves as the staple food for over half of the world's population, underscoring its
critical role in food security (Ganie and Mondal, 2015; Song et al., 2017). The genus includes 24 species with 11
different genome types, providing a vast genetic reservoir that is invaluable for the genetic improvement of rice
cultivars. Wild species of Oryza, in particular, represent an enormous gene pool that can be harnessed for
enhancing disease resistance, stress tolerance, and other agronomic traits in cultivated rice (Stein et al., 2018;
Brondani et al., 2003).

Accurate species classification and understanding the phylogenetic relationships within the Oryza genus are
essential for effective utilization of its genetic resources. Phylogenetic studies reveal the evolutionary pathways
and genetic diversity among species, which are crucial for breeding programs and conservation efforts (Joshi et al.,
2000). For instance, the identification of species-specific markers and the resolution of phylogenetic relationships
help in tracing the lineage-specific emergence and turnover of novel genetic elements, including transposons and
potential new coding and noncoding genes (Stein et al., 2018). Such insights are vital for developing strategies to
introgress beneficial traits from wild species into cultivated varieties (Tabassum et al., 2022).

Molecular markers are indispensable tools in genomics for species identification, genetic diversity analysis, and
phylogenetic studies. Various types of molecular markers, such as chloroplast DNA barcodes, amplified fragment
length polymorphisms (AFLP), simple sequence repeats (SSRs), and inter simple sequence repeats (ISSR), have
been employed to elucidate genetic relationships and species divergence within the Oryza genus (Joshi et al.,
2000). For example, chloroplast genomic resources have been developed to provide high-resolution species
discrimination and phylogenetic analysis, identifying variable regions that serve as reliable DNA barcodes (Song
et al., 2017). Similarly, genome-wide development of novel markers, such as miRNA-based SSRs and InDel
markers, has facilitated the genetic analysis and breeding of rice by revealing polymorphisms and genetic
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diversity among different Oryza species (Stein et al., 2018; Hechanova et al., 2021). These molecular markers not
only aid in the classification and phylogenetic studies but also play a crucial role in marker-assisted breeding,
enabling the efficient use of wild germplasm for rice improvement (Brondani et al., 2003; Virk et al., 2000).

2 Molecular Markers in Genomics
2.1 Definition and types of molecular markers
Molecular markers are specific sequences of DNA that can be used to identify a particular location within the
genome. These markers are essential tools in genomics for various applications, including genome mapping, gene
tagging, and phylogenetic analysis. The primary types of molecular markers include Restriction Fragment Length
Polymorphisms (RFLPs), Random Amplified Polymorphic DNAs (RAPDs), Amplified Fragment Length
Polymorphisms (AFLPs), Inter Simple Sequence Repeats (ISSRs), Simple Sequence Repeats (SSRs), and Single
Nucleotide Polymorphisms (SNPs) (Grover and Sharma, 2016). Each type of marker has unique characteristics
and applications. For instance, SSRs, also known as microsatellites, are highly polymorphic and widely used for
evaluating genetic diversity and constructing genetic maps (Ni et al., 2002). SNPs, on the other hand, are the most
abundant type of genetic variation and are particularly useful for high-throughput genotyping and genome-wide
association studies (Gouda et al., 2021).

2.2 Evolution of molecular marker techniques
The development of molecular marker techniques has evolved significantly over the past few decades. Initially,
RFLPs were the primary markers used due to their codominant nature and high reproducibility. However, the
labor-intensive and time-consuming nature of RFLP analysis led to the development of PCR-based markers such
as RAPDs and AFLPs, which allowed for quicker and more efficient genotyping. The advent of microsatellites
(SSRs) marked a significant advancement due to their high polymorphism and ease of use in PCR-based assays
(Ni et al., 2002). More recently, the focus has shifted towards SNPs and genotyping by sequencing (GBS), which
offer high-throughput and ultra-high-throughput capabilities, making them suitable for large-scale genomic
studies. The integration of modern transcriptomic and functional markers has further enhanced the resolution and
applicability of molecular markers in plant genomics (Grover and Sharma, 2016).

2.3 Advantages of using molecular markers in plant genomics
Molecular markers offer several advantages in plant genomics. They provide a stable, cost-effective, and efficient
means of assessing genetic diversity, which is crucial for germplasm conservation and breeding programs (Ni et
al., 2002). For example, microsatellite markers have been shown to detect a high degree of polymorphism, making
them ideal for evaluating genetic variation among rice cultivars and wild species. Additionally, molecular markers
facilitate the identification and introgression of valuable traits from wild species into cultivated varieties, thereby
enhancing crop improvement efforts (Brondani et al., 2003; Fang et al., 2011). They also enable precise
phylogenetic analysis and species classification, as demonstrated by the use of genome-specific repetitive
sequences in the genus Oryza to classify unknown species and study genome evolution. Furthermore, the
development of diagnostic SNP markers has improved the accuracy of species identification and quality control in
breeding programs (Gouda et al., 2021). Overall, molecular markers are indispensable tools in plant genomics,
offering numerous benefits for research and practical applications.

3 Commonly Used Molecular Markers in Oryza Genomics
3.1 Simple sequence repeats (SSRs)
Simple Sequence Repeats (SSRs), also known as microsatellites, are short, tandemly repeated DNA sequences
that are widely distributed throughout the genome. They are highly polymorphic due to variations in the number
of repeat units, making them valuable for genetic mapping, population genetics, and phylogenetic studies. In
Oryza sativa, SSRs have been extensively utilized to enhance the resolution of genetic maps and to study genetic
diversity. For instance, a study identified 57.8 Mb of rice DNA sequence to determine the frequency and
distribution of SSRs, categorizing them into Class I (hypervariable) and Class II (potentially variable) markers
(Figure 1) (Temnykh et al., 2001; Tabassum et al., 2022; Ma et al., 2024). Another research effort developed 200
Class I SSR markers, integrating them into the existing microsatellite map of rice, thus providing links between
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genetic, physical, and sequence-based maps. SSRs are also known for their high transferability across species, as
demonstrated in a study where SSR loci exhibited broad potential transferability among various angiosperms
(Zhong et al., 2022).

Figure 1 Genomic landscape of Dof genes among ten Oryza genomes (Adopted from Tabassum et al., 2022)
Image caption: Circular diagram from outside to inside are gene names and locations on individual species-specific colored
chromosomal bands, density of high confidence protein-encoding genes (count/Mb; min=65, max=133), density of Dof genes
(count/Mb; min=0.0, max=0.17) and links indicating duplicated genes among ten rice species (Adopted from Tabassum et al., 2022)

3.2 Single nucleotide polymorphisms (SNPs)
Single nucleotide polymorphisms (SNPs) are the most abundant type of genetic variation in genomes. They
involve a single base pair change and are highly stable, making them ideal for high-resolution genetic mapping
and association studies. SNPs have been used in Oryza genomics to identify genetic variations associated with
important agronomic traits (Duhan et al., 2023). The high density and widespread distribution of SNPs across the
rice genome allow for detailed genetic analysis and the development of SNP-based markers for marker-assisted
selection. Although the provided data does not include specific studies on SNPs in Oryza, their general utility in
plant genomics is well-documented, and they are often used in conjunction with other markers like SSRs to
provide a comprehensive understanding of genetic diversity and structure.

3.5 Comparative analysis of these markers in the context of Oryza
When comparing SSRs and SNPs in the context of Oryza genomics, several key differences and complementary
strengths emerge. SSRs are highly polymorphic and multiallelic, which makes them particularly useful for studies
requiring high levels of genetic diversity detection, such as population genetics and phylogenetic studies. They are
also relatively easy to develop and analyze, with a high degree of reproducibility and codominant inheritance
(Kalia et al., 2011). However, SSRs can be less abundant than SNPs and may require more effort to develop
species-specific markers.

On the other hand, SNPs are more abundant and evenly distributed across the genome, providing higher resolution
for genetic mapping and association studies. They are also more stable than SSRs, which can be advantageous for
certain types of genetic analysis. The development of high-throughput SNP genotyping technologies has further
enhanced their utility in large-scale genetic studies (Kumar et al., 2020).



Plant Gene and Traits 2024, Vol.15, No.4, 184-194
http://genbreedpublisher.com/index.php/pgt

187

In Oryza, the integration of both SSR and SNP markers can provide a more comprehensive understanding of
genetic variation. For example, SSRs can be used to quickly assess genetic diversity and structure, while SNPs
can provide detailed insights into specific genetic loci associated with important traits (Temnykh et al., 2000). The
complementary use of these markers allows researchers to leverage the strengths of each type, leading to more
robust and informative genetic analyses.

4 Applications of Molecular Markers for Species Classification
4.1 Case studies of molecular markers used for classifying Oryza species
Molecular markers have been extensively utilized to classify and differentiate various Oryza species. For instance,
a study compared the effectiveness of AFLP, isozymes, ISSR, and RAPD markers in revealing genetic diversity
and discriminating between infraspecific groups of Oryza sativa germplasm. The study found that isozymes and
AFLPs were most effective in classifying the germplasm into three major groups, although there were differences
in the precise classifications generated by ISSR markers (Virk et al., 2000). Another study focused on the use of
RAPD and SSR markers to assess genetic diversity among 40 cultivated varieties and five wild relatives of Oryza
sativa. The study concluded that SSR markers provided a more definitive separation of clusters of genotypes,
indicating a higher level of efficiency for accurate determination of relationships between accessions (Ravi et al.,
2003). Additionally, diagnostic SNP markers developed using DArTseq technology have been validated for
quality control genotyping in a collection of four rice species, demonstrating their utility in species classification
(Figure 2) (Hechanova et al., 2021; Gouda et al., 2021).

Figure 2 Physical locations of the polymorphic markers (Adopted from Hechanova et al., 2021)
Image caption: Physical locations of the polymorphic markers. The position of each marker was mapped on the rice reference
genome (Os-Nipponbare-Reference-IRGSP-1.0) with a horizontal bar. (A) All available 475 polymorphic markers between O. sativa
and the other AA-genome species. The selected polymorphic markers showing polymorphism between IR24 and O. barthii (B), O.
glaberrima (C), O. glumaepatula (D), O. longistaminata (E), O. meridionalis (F), O. nivara (G), O. rufipogon (H), and O. sativa
subsp. japonica (I), respectively. Within a species, the common polymorphic markers among three accessions and between two
accessions are highlighted by red and blue bars, respectively, and the accession-specific polymorphic markers are depicted with a
black bar. (Adopted from Hechanova et al., 2021)
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4.2 Comparative analysis of marker efficiency for classification purposes
Different molecular markers vary in their efficiency for species classification. For example, SSR markers have
been shown to be more efficient than RAPD markers in accurately determining relationships between closely
related accessions of Oryza sativa (Ravi et al., 2003). Similarly, a study comparing the transferability of
microsatellite and sequence-tagged site (STS) markers across 16 Oryza species found that microsatellite markers
had a higher level of polymorphism and were more effective in detecting genetic diversity compared to STS
markers (Brondani et al., 2003). Another study highlighted the utility of sequence-tagged microsatellite sites
(STMS) markers, which were found to be highly reproducible and effective in identifying polymorphisms among
different Oryza species (Dalai et al., 2021). These findings suggest that while all marker systems have their
strengths, SSR and STMS markers may offer higher efficiency for species classification in Oryza.

4.3 Limitations and challenges in species classification using molecular markers
Despite their utility, molecular markers also present certain limitations and challenges in species classification.
One major challenge is the partial agreement in relationships between individual accessions when different
markers are used, as observed in a study comparing AFLP, isozymes, ISSR, and RAPD markers (Virk et al.,
2000). Additionally, the transferability of markers across different species can be variable, with some markers
showing reduced levels of genetic diversity detection, as seen with STS markers (Brondani et al., 2003). Another
limitation is the potential for misidentification due to morphological similarities among closely related species,
which can complicate the validation of molecular markers. Furthermore, the development and validation of new
markers, such as SNPs, require extensive testing to ensure their reliability and cost-effectiveness for routine use
(Gouda et al., 2021). These challenges highlight the need for careful selection and validation of molecular markers
to ensure accurate species classification in Oryza genomics.

5 Case Studies
5.1 A Specific case of using ssr markers to construct a phylogenetic tree of the genus Oryza
Simple sequence repeats (SSRs) have been extensively used in constructing phylogenetic trees due to their high
polymorphism and codominant inheritance. In the genus Oryza, SSR markers have been particularly effective. For
instance, a study on the rice genome (Oryza sativa L.) identified a high frequency of SSRs, with Class I SSRs
occurring every 16 kb in continuous genomic sequences and Class II SSRs every 1.9 kb. This high density of
SSRs allows for detailed genetic mapping and phylogenetic analysis. The study developed 200 Class I SSR
markers, which were integrated into the existing microsatellite map of rice, providing a robust framework for
phylogenetic studies (Temnykh et al., 2001). This integration facilitates the construction of a detailed
phylogenetic tree, revealing the genetic relationships within the genus Oryza.

5.2 Case studies on phylogeny reconstruction using different markers
Phylogenetic reconstruction in plants has utilized various molecular markers beyond SSRs. For example, a study
on Cryptomeria japonica developed EST-SSR markers from expressed sequence tags, which are useful for
genome analysis due to their abundance and polymorphism (Ueno et al., 2012). These markers were found to be
less polymorphic than genomic SSRs but still valuable for phylogenetic studies. Another study on Cucurbita pepo
used SSR markers to construct a genetic linkage map, demonstrating high inter-species transferability and
polymorphism (Gong et al., 2008). This map included 178 SSRs and provided insights into the genetic
relationships within the genus Cucurbita. Additionally, a study on Picea abies highlighted the use of both
codominant and dominant SSR markers for population studies and phylogenetic analysis, despite the challenges
posed by null alleles and dominant markers (Yazdani et al., 2003). These examples illustrate the versatility of
different molecular markers in phylogenetic reconstruction across various plant species.

5.3 Insights gained from phylogenetic studies in Oryza
Phylogenetic studies in the genus Oryza have provided significant insights into the genetic diversity and
evolutionary relationships among species. The use of SSR markers has been particularly informative. For instance,
the high degree of allelic variation revealed by SSR markers in rice has been attributed to replication slippage and
unequal crossing-over during meiosis, which contribute to the genetic diversity observed within the genus (Kalia
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et al., 2011). Moreover, the integration of SSR markers into genetic maps has facilitated the identification of
genetic linkages and the construction of detailed phylogenetic trees (Martina et al., 2022). These studies have also
highlighted the importance of SSR markers in marker-assisted selection and breeding programs, as they provide
valuable information on genetic relationships and trait inheritance. Overall, the use of SSR markers in
phylogenetic studies has enhanced our understanding of the genetic architecture and evolutionary history of the
genus Oryza.

6 Advancements in Molecular Marker Technologies
6.1 Next-generation sequencing (NGS) and its impact on marker discovery
The advent of next-generation sequencing (NGS) has revolutionized the field of genomics, providing
unprecedented capabilities for the discovery and genotyping of genetic markers. NGS technologies enable the
rapid sequencing of millions of DNA fragments simultaneously, which has significantly reduced the cost and time
required for genome-wide studies (Davey et al., 2011; Satam et al., 2023). This high-throughput approach is
particularly beneficial for both model and non-model organisms, facilitating the discovery of genetic markers
even in species with no existing genomic data. Techniques such as restriction-site-associated DNA sequencing
(RAD-seq) and reduced-representation libraries (RRLs) have been developed to reduce the complexity of target
genomes, making marker discovery more efficient and cost-effective. Moreover, NGS has expanded the scope of
genomics research, enabling studies on rare genetic diseases, cancer genomics, microbiome analysis, and
population genetics.

6.2 High-throughput genotyping platforms
High-throughput genotyping platforms have emerged as powerful tools for large-scale genetic analysis, allowing
researchers to genotype thousands of samples simultaneously. These platforms leverage the advancements in NGS
technologies to provide detailed information on genetic variations across populations (Dijk et al., 2014). For
instance, targeted multiplex NGS techniques enable the simultaneous resequencing of multiple genomic regions
from numerous individuals, enhancing the efficiency of population genomic studies (Hancock‐Hanser et al., 2013).
Such platforms are particularly useful for non-model organisms, where traditional genotyping methods may be
less effective (Cross et al., 2016). The integration of high-throughput genotyping with NGS has also facilitated the
development of novel applications in clinical diagnostics, agrigenomics, and forensic science, further broadening
the impact of these technologies (Pabinger et al., 2013).

6.3 Integration of multi-omics data for enhanced phylogenetic and classification accuracy
The integration of multi-omics data, including genomics, transcriptomics, proteomics, and metabolomics, has
significantly enhanced the accuracy of phylogenetic and species classification studies. By combining data from
multiple molecular levels, researchers can obtain a more comprehensive understanding of the evolutionary
relationships and genetic diversity within and between species (Kumar and Kocour, 2017). NGS technologies play
a crucial role in this integration, providing the high-throughput sequencing capabilities needed to generate
large-scale multi-omics datasets. For example, the use of both mitochondrial and nuclear DNA sequencing has
improved the resolution of phylogeographic studies, allowing for more precise identification of genetic structure
and evolutionary history (Hancock‐Hanser et al., 2013). Additionally, the application of NGS in systematics and
population genetics has demonstrated the potential of multi-omics approaches to uncover novel insights into the
genetic and biological significance of various species (Cross et al., 2016).

7 Future Directions in Molecular Marker Research for Oryza
7.1 Potential of CRISPR-based and other emerging molecular tools
The advent of CRISPR/Cas9 technology has revolutionized genome editing, offering unprecedented precision and
efficiency in genetic manipulation. This technology holds immense potential for advancing molecular marker
research in Oryza genomics. CRISPR/Cas9 allows for targeted modifications at specific genomic loci, facilitating
the study of gene function and the development of new molecular markers (Figure 3) (Zhang et al., 2014; Adli,
2018). Recent advancements in CRISPR technology, such as the development of high-fidelity variants and base
editors, further enhance its applicability by reducing off-target effects and enabling precise nucleotide changes.



Plant Gene and Traits 2024, Vol.15, No.4, 184-194
http://genbreedpublisher.com/index.php/pgt

190

Additionally, the use of CRISPR/Cas systems in plants, including rice, has demonstrated significant
improvements in yield, stress tolerance, and biofortification, underscoring its potential for crop improvement.
Future research should focus on optimizing CRISPR delivery systems and exploring its integration with other
genomic tools to maximize its utility in Oryza genomics.

Figure 3 Major application areas of CRISPR-Cas-based technologies beyond genome editing (Adopted from Adli, 2018)
Image caption: While WT Cas9 enables genome editing through its guidable DNA cleavage activity, catalytically impaired Cas9
enzymes have been repurposed to achieve targeted gene regulation, epigenome editing, chromatin imaging, and chromatin topology
manipulations. Furthermore, the catalytically impaired nickase Cas9 enzyme has been used as a platform for base editing without
double strand breaks. In addition to DNA-targeting Cas proteins, novel RNA-targeting CRISPR/Cas systems have been described as
well (Adopted from Adli, 2018)

7.2 Opportunities for integrating molecular markers with other genomic technologies
Integrating molecular markers with other genomic technologies presents a promising avenue for advancing Oryza
genomics. The combination of CRISPR/Cas9 with high-throughput sequencing technologies can facilitate the
identification and validation of novel molecular markers (Wang et al., 2017). Moreover, the integration of
CRISPR-based epigenome editing tools can provide insights into the regulatory mechanisms governing gene
expression, thereby aiding in the discovery of epigenetic markers (Nakamura et al., 2021). The use of CRISPR in
conjunction with transcriptomics and proteomics can also enhance our understanding of gene function and
interaction networks, leading to the identification of functional markers associated with important agronomic traits
(Adli, 2018; Manghwar et al., 2020). By leveraging these integrated approaches, researchers can develop more
comprehensive marker-assisted selection strategies, ultimately accelerating the breeding of improved rice
varieties.

7.3 Challenges and prospects for future research in Oryza genomics
Despite the significant advancements in molecular marker research, several challenges remain in the field of
Oryza genomics. One major challenge is the efficient and precise delivery of CRISPR/Cas9 components into plant
cells, which is crucial for achieving high editing efficiencies and minimizing off-target effects (Leisen et al., 2020).
Additionally, the complexity of the rice genome, with its high degree of genetic diversity and polyploidy, poses
challenges for marker development and validation (Wang et al., 2017). Future research should focus on addressing
these challenges by developing more efficient delivery methods, such as nanoparticle-based systems, and by
employing advanced bioinformatics tools for accurate marker identification and validation (Manghwar et al.,
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2020). Furthermore, the ethical and regulatory considerations surrounding the use of genome editing technologies
in agriculture must be carefully addressed to ensure their safe and responsible application (Li et al., 2021). By
overcoming these challenges, the prospects for future research in Oryza genomics are promising, with the
potential to significantly enhance rice breeding and production.

8 Concluding Remarks
Molecular markers have proven to be invaluable tools in the classification and phylogenetic analysis of Oryza
species. Techniques such as AFLP, ISSR, RAPD, and SSR have been extensively utilized to unravel the genetic
relationships and evolutionary pathways within the genus Oryza. AFLP markers, for instance, have demonstrated
the polyphyletic nature of Oryza evolution, revealing multiple independent lineages diverging from a common
ancestor. Similarly, ISSR markers have provided insights into the genetic diversity and phylogenetic relationships
among various Oryza species, highlighting the distinctiveness of species like Oryza brachyantha and Oryza
australiensis. The use of multiple marker systems, including RAPDs, ISSRs, and SSRs, has further elucidated the
genomic differentiation between wild and cultivated species, as well as between diploid and tetraploid genomes
within the genus. These molecular markers not only facilitate the accurate classification of Oryza species but also
enhance our understanding of their evolutionary history and genetic diversity, which is crucial for conservation
and breeding programs.

The application of molecular markers in Oryza research holds promising potential for further advancements in
species classification, phylogenetic studies, and genetic resource management. The development of new marker
systems, such as INDEL markers, offers rapid and reliable discrimination of genome types, which can
significantly improve the identification and conservation of wild Oryza species. Additionally, the integration of
high-throughput sequencing technologies and phylogenomics approaches can provide more comprehensive and
accurate phylogenetic reconstructions, as demonstrated by the use of nuclear genes and intergenic regions to
resolve the phylogeny of AA-genome species. The continued exploration of genetic diversity through molecular
markers will also aid in the discovery of novel alleles and haplotypes, which are essential for crop improvement
and disease resistance. As the field progresses, the combination of traditional molecular markers with advanced
genomic tools will undoubtedly enhance our ability to study and utilize the genetic wealth of the Oryza genus,
ultimately contributing to sustainable agriculture and food security.
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