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Abstract Chinese fir [Cunninghamia lanceolate (Lamb.) Hook] is one of the most important indigenous timber tree species in
China. The aim of the present work is to characterize simple sequence repeat (SSR) loci derived from the specific length
amplified fragment sequencing (SLAF) data of the genome and to investigate the number of pollen donors for per cone was with
novel SSR markers of low-frequency null alleles. A total of 58855 SLAF-SSR with frequency of 42.04 SSR/Mbp were identified
in about 1.40 Gb Chinese fir genome. Dinucleotide repeat SSR contributed to 66.4% of the total SSR from SLAF data. The
AT/AT and ATG/CAT motifs were predominant in the category of din- and trinucleotide repeat SSR. Low frequencies of null
alleles (<5%) were detected at the nine novel SSR markers with average expected heterozygosity of 0.513 and polymorphism
information content score of 0.508. The number of tested progeny of a cone was from 4 to 13. It could be 67 pollinizers for 15
cones and the average number of pollen donors per cone was 4.5. The study points out, for the first time, that there are multiple
pollen donors for single cone in gymnosperm.
Keywords Chinese fir; SLAF; SSR; Null alleles; Sibship relationships

Due to the genetic characteristics of co-dominance inheritance, high reliability and wide distribution in genome,
simple sequence repeats (SSR) have been one of the most widely used molecular markers (Gong et al., 2019;
Karam et al., 2019; Torokeldiev et al., 2019). The rapid development of sequencing technologies has allowed
genome-wide characterization of SSR to be performed (Sonah et al., 2011; Xiao et al., 2015; Wang et al.,
2018).

Microsatellites are powerful tools for pedigree analysis (Dong et al., 2018; Huang et al., 2018; Zurn et al.,
2018). Despite many obvious advantages of the marker, the defect exists in SSR (Selkoe et al., 2006). The
presence of null alleles significantly affect the accuracy of pedigree determination (Dong et al., 2006). Loci
with null allele frequencies (>0.05) should be excluded from pedigree analysis (Karaket et al., 2012; Sahoo et
al., 2017).

Chinese fir [Cunninghamia lanceolate (Lamb.) Hook], a gymnosperm, is one of the most important indigenous
timber tree species in China for its high growth rate, good wood quality, and the versatility of its wood (Li et al.,
2017). To our best knowledge, the basic characteristic of genomic SSR from Chinese fir is unknown and the
research on the pollen donors number of offspring from a cone of gymnosperm has not been reported. In the
present study we describe: (1) characterization of SSR derived from the specific length amplified fragment
sequencing data（SLAF-SSR）of the Chinese fir genome. (2) Evaluation of the primers validity and diversity
information parameters of SLAF-SSR and expressed sequence tag (EST-SSR). (3) development of SSR
markers with low-frequency null alleles (<5%). (4) analysis of the pollen donors number of a Chinese fir cone.
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1 Results
1.1 SLAF-SSR survey
A total of 58855 SLAF-SSR, frequency of which was 42.04 SSR/Mbp, were identified in about 1.40 Gb
Chinese fir genome. The number of dinucleotide repeat SSR was 399 9, contributed to 66.4% of the total SSR.
This is followed by trinucleotide repeat SSR with 16,547, accounting for 28.1% of the total. The AT/AT and
ATG/CAT motifs were predominant in the category of din- and trinucleotide repeat SSR, accounting for 43.9%
and 19.9% respectively (Figure 1). The number of di- and trinucleotide SLAF-SSR was declining accompanied
by number increase of the motif repeat.

1.2 Validation of SLAF-SSR and EST-SSR
A subset of 100 markers, which were successfully designed the primer, were randomly chosen respectively
from SLAF-SSR and EST-SSR of Chinese fir. 12 individuals were employed to test the amplification validation.
62 SLAF-SSR markers presented specific products, but 51 markers of them occurred stutter bands. Only 3
SLAF-SSR markers displayed specific products and no stutter bands and demonstrated to be polymorphic. All
the EST-SSR markers did not present stutter bands. 86 markers displayed specific products and 13 of them
demonstrated to be polymorphic. Therefore, a total of 16 novel polymorphic SSR markers, which appear
specific product and no stutter band, were development.

1.3 Assessment of genetic diversity
Details of 16 novel polymorphic SSR markers and their variability characteristics across 48 Chinese fir
individuals were summarized in Table 1. Seventy-one alleles were identified, with an average of 4.44 observed
alleles per locus, ranging from two to nine. There were twenty-one alleles in the three loci of SLAF-SSR, with
an average of 7.00, ranging from five to nine. The expected heterozygosity, ranging from 0.334 to 0.810
(average 0.566) was clearly higher than the observed heterozygosity, ranging from 0.283 to 0.727 (average
0.499), which was in accordance with the mean fixation index (FIS=0.103; P<0.05) and indicated there were a
greater excess of homozygotes most often a result of inbreeding (Frankham et al. 2010). As a measurement of
the genetic diversity, the PIC mean polymorphism level of the loci was 0.512. Eight loci were at HWE and
other eight loci showed significant departure from HWE (P-value<0.05). Low null allele frequencies were
showed at the nine loci (F-Null<0.05), which were SSR4, SSR5, SSR6, SSR7, SSR8, SSR9, SSR11, SSR12,
SSR16, with average expected heterozygosity of 0.513 and PIC score of 0.508.

Figure 1 Distribution of di- and trinucleotide motifs SLAF-SSR of Chinese fir
Note: types of tri-nucleotide motif less than 0.01% of that were not showed in this figure
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Table 1 Characteristics of primer sequence and diversity information parameters of 16 SSR loci

Locus Source Primer sequences(5`-3`) size Repeat NA NE HO HE Fis PIC P-valu
e

F-Null
0.058

0.304

0.093

-0.013

0.055

0.032

-0.042

0.045

0.038

0.029

0.025

0.017

0.015

0.067

0.023

-0.039
P-valu
e

SSR1 SLAF R:CAAATCAGACTATG
TGATAGT

117 (AT)7 9.00 5.26 0.283 0.810 0.114 0.788 0.002 0.058
F:TAAAGGTGTAATGC
CTCGCCSSR2 SLAF R:TCGCATGCATGTAT
GTGTTG

278 (TGA)1
2

7.00 4.00 0.604 0.750 0.472 0.712 0.000 0.304
F:GCATCATCATCATC
GTCGTCSSR3 SLAF R:GAGGGAGGAAGAG
GGAGAGA

246 (TA)8 5.00 3.51 0.396 0.715 0.155 0.672 0.015 0.093
F:TAGGATGGGTGGTT
GGTGTTSSR4 EST R:GGGTTTGGGCCCTT
TCAAAA

205 (AG)8 2.00 1.76 0.558 0.431 -0.026 0.338 0.927 -0.013
F:TGGATGGGATTATG
CACCAGTSSR5 EST R:GCGCGCGCACATAT
ACATAC

100 (CA)6 3.00 2.87 0.362 0.652 0.021 0.578 0.580 0.015
F:TTCACCTTGGCCAA
GATTGTSSR6 EST R:GGCAATCTAGCGAG
CTTCCT

124 (AATG
)5

3.00 2.42 0.457 0.586 0.073 0.521 0.733 0.032
F:CTTGCTCTCCCTGTA
TGCGTSSR7 EST R:GCATTGAGAGCGGG
TCTTCT

233 (CTTT)
5

3.00 1.50 0.614 0.334 -0.158 0.291 0.379 -0.042
F:AAGAAGCGTGCAGG
GAAAGASSR8 EST R:CTCCCCTGCCACTG
TTGAAT

260 (GGC)5 7.00 4.68 0.296 0.786 0.104 0.760 0.014 0.045
F:TCATGTAAGCGCGT
ACCTCCSSR9 EST R:AAATAGCCTCCCCC
ACCTCT

151 (TTCT)
6

5.00 3.27 0.417 0.694 0.159 0.638 0.035 0.038
F:ATGGCTGATGGAGG
GCAAAASSR10 EST R:GAAAGCGAAACGG
CTGTCTG

193 (TTG)5 3.00 2.03 0.575 0.507 0.160 0.428 0.385 0.099
F:TAGCGAGATCGAAC
CACAGCSSR11 EST R:GACGACAACCGAC
ACCATCT

189 (CCG)7 4.00 1.83 0.568 0.452 0.045 0.415 0.743 0.025
F:CGAAACGCCTTTTG
TGACGTSSR12 EST R:GCCTTGTGCAAAGC
GGTAAA

214 (GGA)6 4.00 2.20 0.489 0.546 0.065 0.481 0.030 0.017
F:AGGAAACTGCACTG
TACGCASSR13 EST R:GCAAGAGCATCAGC
ATCAGC

224 (CAG)6 4.00 1.57 0.727 0.362 0.246 0.344 0.048 0.015
F:CAAAGTCAGGCATG
CCCCTASSR14 EST R:AGGTGTCTTGACCT
CTTGCG

188 (CAG)5 2.00 1.97 0.568 0.494 0.125 0.372 0.365 0.067
F:TGTAGCGGTTATCG
GCCATCSSR15 EST R:AGGTGTAGCAGATC
CAAGGA

278 (TTTG)
5

2.00 1.57 0.705 0.363 0.187 0.297 0.184 0.103
F:CCAGATCAATAGTC
TGCCTCGTSSR16 EST R:AGGAAACCCCACCG
CATATG

245 (CACC
AA)8

8.00 2.38 0.362 0.580 -0.101 0.549 0.010 -0.039
F:CACTGCTCGTTGGC
ATTGTCAverage 4.44 2.68 0.499 0.566 0.103 0.512 0.286

1.4 Sibship assignment of progeny from a single cone
Genotypes of 108 progeny seedlings from 15 cones were evaluated with nine SSR locus (null allele
frequencies<0.05). The individuals from full-sibs family were analyzed with COLONY program (Table 2).
COLONY implementing full-pedigree likelihood methods infers sibship among individuals (Jones and Wang,
2010). The individuals of non-full sibs from a cone were derived from different pollen donors. The number of
progeny of a cone was from 4 to 13, the average amount of which was 7.2, and the number of conjectural pollen
donors per cone was 3 to 7. It could be 67 pollen donors for 15 cones and the average amount of pollen donors
for a cone was 4.5.
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Table 2 Number of full-sib progeny and male parent from single Chinese fir cone
Full-sib family number Cone number

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 1,3 1,9 1,2 1,5,6,10 1,3,5,9 1,9 1,5 1,3 1 1,5 1,2 1,4,5 1 1,4,6 1
2 2,4 2,11,13 3 2,3,7 2 2,5 2 2 2 2 3 2 2 2,9 2,6
3 5 3,4 4 4 4 3,4,10 3,8 4 3,4 3 4 3 3,5 3,8 3
4 6 5,10 8,9 6 6,8 4,6 5 4 4 5 4
5 7 6 7 7 7 6,7 7,10 5
6 7,12 8,10
7 8
Number of progeny 7 13 4 10 10 10 8 5 4 7 4 5 5 10 6
Conjectural number of pollen
donors

5 7 3 4 6 5 5 4 3 5 3 3 4 5 5

2 Discussion
Trinucleotide repeats were the most abundant repeats in both EST-SSR and SSR from transcription factor
unigene of Chinese fir (Wen et al., 2015; Li et al., 2019). The AT/AT and AAG/CTT repeats were predominant
in din- and trinucleotide repeats of EST-SSR of Chinese fir (Wen et al., 2015). The AG/CT and AGC/GCT
repeats were predominant in those of SSR from transcription factor unigene of Chinese fir (Xu et al., 2014; Li
et al., 2019). This indicates that there are differences in the distribution of SSR motifs in the transcribed and
non-transcribed regions of the Chinese fir genome. SLAF-SSR markers occurred a lot of stutter bands may be
because these markers existed mainly in non-transcribed regions of the genome and flanking sequence of the
markers were not conserved (Angers et al., 1997; Grimaldi et al., 1997). Although SLAF-SSR may be obtained
more alleles per locus than EST-SSR, the locus with low null allele frequencies were all in the category of
EST-SSR. It indicated that EST-SSR had a lower frequency of null alleles than genomic SSR (Rungis et al.,
2004; Ellis et al., 2007). Sibship assignment by the program have been conducted in forest trees (Lalitha, 2000;
Litkowiec et al., 2018). This is the first time to exposit that there are multiple pollinators for single cone in
gymnosperm.

3 Materials and Methods
3.1 Material collection and DNA extraction
Fresh needles of 48 Chinese fir clones were collected in a clonal seed orchard located at Xishan Forest Farm,
Rongan County, Guangxi Province, China as experimental materials. The clonal seed orchard was established
with plus trees collected from Guangxi, Guangdong, Hunan, Guizhou, Fujian, Zhejiang. Twelve clones were
randomly selected from 48 clones for SSR primer validity test. The polymorphism and null allele frequencies
was assessed with 48 clones.

Fifteen Chinese fir clones were randomly selected from seed orchard. One cone was picked and numbered from
each Chinese fir clones. The seeds were separated according to the clone number and cultured for germination.
The seeds of each cone were wrapped in gauze and labeled. After sterilizing with 0.5% potassium
permanganate solution for 25 min, rinsing with distilled water for 3~5 times, then soaking in water for 24 hours,
and seeds were put on the pad with the infiltrated cotton wool in germination boxes. Germination boxes were
put in constant temperature incubator at 25℃. When the seedlings grew to about 10 cm high, the whole
seedlings were placed in a 2 mL centrifuge tube and stored in an ultra-low temperature freezer at -80℃. A total
of 108 seedlings were germinated, in which SSR loci were detected for full sibling group analysis. The total
genomic DNA of each experimental material was extracted using an Ezup Column plant Genomic DNA Kit
(Sangon Biotech, China) according to the instructions. The DNA extraction quality was measured by 1%
agarose gel electrophoresis, and the DNA concentration was measured using a Nanodrop 2000
Spectrophotometer (Thermo Scientific).



Tree Genetics and Molecular Breeding 2020, Vol.10, No.5, 1-7
http://genbreedpublisher.com/index.php/tgmb

5

3.2 SSR loci development and primer design
One Chinese fir clone was randomly selected from each of six provinces for specific-locus amplified fragment
sequencing (SLAF-seq). SLAF library construction were achieved as described (Wang et al., 2018). The SSR
sites were searched using the MISA program (Beier et al., 2017) with SLAF-seq data. SSR containing di-, tri-,
tetra-, penta-, or hexanucleotide units repeated at least 6, 5, 4, 3 or 3 times, respectively, were selected. The
SSR markers were designed according to the SLAF-seq data and the transcriptome sequencing data
(unpublished) with primer 5 software (Lalitha, 2000). The primers were commissioned by Sangon Biotech
(China).

3.3 Primer screening and SSR typing
PCR reactions were employed in a total volume of 20 μL contained with 1.0 μL (about 50 ng) genomic DNA,
1.0 μL forward primer (10 μM), 1.0 μL reverse primer (10 μM), 1.6 μl dNTP Mixture (dATP, dTTP, dCTP,
dGTP, each at 2.5 mM), 2.0 μL PCR Buffer (Mg2+plus), 0.1 μL Taq (5 U/uL), supplemented with 20 μL with
ddH2O. The PCR kit was purchased from Takara (Dalian, China). The following protocol was applied: initial
denaturation at 95℃ for 5 min followed by 35 cycles of 30 s of 95℃, 56℃ for 30 s, and extension at 72℃ for
30 s followed by 10 min. The PCR amplification products were detected by silver staining after 8%
non-denaturing polyacrylamide gel electrophoresis.

3.4 Statistical analysis
According to the molecular weight, from large to low one, the alleles was recorded in alphabetical order. Allele
sizes were estimated by comparison to an M13 sequence ladder. The observed number of alleles per locus (NA),
the effective number of alleles (NE), Shannon Index Shannon's Information index (I), observed heterozygosity
observed heterozygosity (Ho), expected heterozygosity (HE), Inbreeding among individuals within
subpopulations (Fis), Significant level for deviations from Hardy-Weinberg equilibrium (P-Value) was
calculated using POPGENE version 1.32 (Yeh et al., 1999). Polymorphism information content (PIC), the
frequency of null alleles (F-Null) were calculated using the computer program CERVUS (Kalinowski et al.,
2007). Sibship identification was performed employing COLONY (Jones and Wang, 2010).
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