Development of Bt Rice by Molecular Marker-assisted Selection and Assays for Insect-Resistance  

Xin Liu , Zhou Yang , Guanjun Gao , Yongjun Lin , Xueping Zhu , Jianyou Yu , Yuqing He
National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, National Center of Plant Gene Research, Wuhan, 430070, P.R. China
Author    Correspondence author
Molecular Plant Breeding, 2010, Vol. 1, No. 2   doi: 10.5376/mpb.2010.01.0002
Received: 14 May, 2010    Accepted: 12 Jun., 2010    Published: 27 Sep., 2010
© 2010 BioPublisher Publishing Platform
This is an open access article published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Preferred citation for this article:

Liu et al., 2010, Development of Bt rice by molecular marker-assisted selection and assays for insect-resistance, Molecular Plant Breeding Vol.1 No.2 (doi:10.5376/mpb.2010.01.0002)

Abstract

Rice germplasm 9311 and Fuhui 838 are both elite parent lines, particular for two and three-line indica hybrid rice in China, respectively. Two kinds of major lepidopteran pests in rice production, such as stemborers and leaffolders, cause severe yield loss in the most rice-producing countries. Bt toxic protein which are expressed by cry1Ac, cry1C* and cry2A* should be the most available methods to decrease the damage by these lepidopterans. To improve the rice resistance to insects, three Bt genes, i.e. cry1Ac, cry1C* and cry2A* , were introgressed to 9311 and Fuhui 838 from the donor parents, that are Minghui63 (cry1C*), Minghui63 (cry2A*), Minghui63 (cry1Ac) respectively by molecular maker-assisted selection. The results showed that the improved lines not only got greatly resistance to the pests, but also acquired good results of the agronomic traits. The improved lines would not only have potential application value but also can be used as bridge materials in rice transgenic breeding.

Keywords
Rice (Oryza sativa L.); Bt Gene (cry1Ac, cry1C* and cry2A*); Marker-assisted selection; Assays for insect-resistant
[Full-Text PDF] [Full-Flipping PDF] [Full-Text HTML]