Research Report
Cloning, Expression and Vector Construction of BrSOT16 Related to Glucosinolate Synthesis in Brassica rapa ssp. chinensis L.
2 Zhejiang Provincial Key Laboratory of Agricultural Product Quality Improvement Technology, Zhejiang Agriculture and Forestry University Biological Seed Research Center, College of Agriculture and Food Science, Zhejiang Agriculture and Forestry University, Hangzhou, 311300, China
Author Correspondence author
Molecular Plant Breeding, 2020, Vol. 11, No. 29 doi: 10.5376/mpb.2020.11.0029
Received: 21 Sep., 2020 Accepted: 15 Dec., 2020 Published: 31 Dec., 2020
Guo E.B., Zhu Z.J., Shi Q.Y., Ma Y.H., Yu Y.J., and Li M.L., 2020, Cloning, expression and vector construction of BrSOT16 related to glucosinolate synthesis in Brassica rapa ssp. chinensis L.,Molecular Plant Breeding, 11(29): 1-10 (doi: 10.5376/mpb.2020.11.0029)
Sulfotransferase is an enzyme that catalyzes the transfer of sulfate groups from 3’-phosphoadenosine 5’-phosphosulfate to various receptor molecules, and plays an important role in plant growth and development as well as resistance to diseases and insect pests, etc. In this study, the 1 020 bp gene sequence of BrSOT16 was obtained by homologous cloning from Brassica rapa. Bioinformatics analysis showed that BrSOT16 encoded a stable hydrophilic protein containing 339 amino acids, whose molecular mass and theoretical isoelectric point were 39.25 kD and 5.50, respectively. It was a member of the plant sulfotransferase family containing four conserved regions and having no signal peptide and transmembrane domain. Evolutionary analysis showed that BrSOT16 had the closest relationship with BcSOT16 and BnSOT16. QRT-PCR analysis showed that BrSOT16 showed an expression pattern that increased first and then decreased as the plants continued to develop, and it had the highest expression level in the leaves of pakchoi at the twelve-leaf stage. The overexpression vector of BrSOT16 was constructed by the method of homologous substitution for the biological function identification, which could provide experimental materials and technical assistance for further study on the genetic engineering of pakchoi.
. PDF(805KB)
. HTML
Associated material
. Readers' comments
Other articles by authors
. Erbiao Guo
. Zhujun Zhu
. Qinyu Shi
. Yonghua Ma
. Youjian Yu
. Meilan Li
Related articles
. Brassica rapa
. Sulfotransferase
. Glucosinolates
. Gene clone
. Gene expression
. Vector construction
Tools
. Email to a friend
. Post a comment