Author Correspondence author
Molecular Plant Breeding, 2021, Vol. 12, No. 34 doi: 10.5376/mpb.2021.12.0034
Received: 27 Oct., 2021 Accepted: 03 Nov., 2021 Published: 12 Nov., 2021
Ge S.N., Wei Y.L., Zhang J.J., Shao W.J., Li J.X., Ding D., Liu M., and Xu J.Y., 2021, Bioinformatic analysis of catalase gene family of Arabidopsis and maize, Molecular Plant Breeding, 12(34): 1-10 (doi: 10.5376/mpb.2021.12.0034)
Catalase (CAT) is an antioxidant enzyme, which plays a key role in plant development and abiotic stress response. In this study, three maize ZmCATs and three Arabidopsis AtCATs genes were identified by screening NCBI and phytozome databases. The protein characteristics, evolutionary relationship, gene structure, protein secondary and tertiary structure, gene expression at different developmental stages or under abiotic stress treatment were analyzed. The results showed that there were some similarities between CAT families from the two species. The proteins encoded by ZmCATs and AtCATs genes were hydrophobic. According to phylogenetic tree analysis, CATs gene family was divided into two subfamilies. ZmCATs and AtCATs both contain two conserved domains, and the secondary structures of ZmCATs and AtCATs protein are mainly α-helix and random coils. The cluster analysis of ZmCATs expression in different growth and development stages showed that ZmCAT1, ZmCAT2 and ZmCAT3 were highly expressed in maize growth and development stage. Under abiotic stress, the expression of ZmCATs gene was significantly affected by temperature stress. The results of this study provide a theoretical basis for exploring the function of CAT in maize and other crops.