Research Article
Screening and Analysis of Plant Resistant Genes in Secondary Growth Stems of Chlorophyll Deficient Mutants from Artocarpus heterophyllus
2 College of Tropical Crops, Hainan University, Haikou, 570228, China
3 Key Laboratory of Crop Gene Resources and Germplasm Enhancement in Southern China, Ministry of Agriculture, Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737, China
4 College of Life Science and Pharmacy, Hainan University, Haikou, 570228, China
Author Correspondence author
Molecular Plant Breeding, 2022, Vol. 13, No. 7 doi: 10.5376/mpb.2022.13.0007
Received: 09 Feb., 2022 Accepted: 14 Feb., 2022 Published: 19 Feb., 2022
Zheng L.T., Yu X.D., Cai Z.P., Luo J.J., Wu F.H., Dong J.N., and Xie L.Q., 2022, Screening and analysis of plant resistant genes in secondary growth stems of chlorophyll deficient mutants from Artocarpus heterophyllus, Molecular Plant Breeding, 13(7): 1-9 (doi: 10.5376/mpb.2022.13.0007)
In order to study the changes of plant resistant genes (PRGs) in the secondary growth stems of chlorophyll deficient mutant (CDM) of A. heterophyllus, 9 630 PRGs were selected from the transcriptome data. After removing the low abundance (FPKM≤0.5), the differentially expressed genes (DEGs) were screened, and 2 513 DEGs were subjected to weighted gene coexpression network analysis (WGCNA). There are 183 DEGs in the module with high type correlation. The module genes were analyzed for GO function annotation, classification, transcription factors (TFs) and receptor-like kinases (RLKs). The results showed that module genes were mainly annotated in functional groups such as binding, catalytic activity, and metabolic process. TFs analysis showed that there are 7 families, 14 transcription factors. RLKs analysis found that 11 of the 12 DEGs in the RLK-Pelle_DLSV subfamily were up-regulated in CDM, indicating that the subfamily plays an important role in resisting stress of secondary growth stems of A. heterophyllus CDM. This study used transcriptome sequencing data to analyze the changes of PRGs in the secondary growth stems of A. heterophyllus CDM, providing data for the study of photosynthesis in response to stress of woody plant stems.