Research Insight

Autotetraploid Rice Hybrids: Overcoming Sterility Barriers for Enhanced Heterosis  

Qian Zhu1,2,3 , Xiaoling Zhang4 , Hui Zhang1,3 , Juan Li1,2,3 , Chunli Wang1,3 , Dongsun Lee1,2,3 , Lijuan Chen1,2,3
1 Rice Research Institute, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
2 The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
3 State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, Yunnan, China
4 Kunming University, Kunming, 650214, Yunnan, China
Author    Correspondence author
Molecular Plant Breeding, 2024, Vol. 15, No. 4   doi: 10.5376/mpb.2024.15.0017
Received: 10 Jun., 2024    Accepted: 15 Jul., 2024    Published: 26 Jul., 2024
© 2024 BioPublisher Publishing Platform
This is an open access article published under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Preferred citation for this article:

Zhu Q., Zhang X.L., Zhang H., Li J., Wang C.L., Lee D.S., and Chen L.J., 2024, Autotetraploid rice hybrids: overcoming sterility barriers for enhanced heterosis, Molecular Plant Breeding, 15(4): 167-177 (doi: 10.5376/mpb.2024.15.0017)

Abstract

Autotetraploid rice, developed through whole genome duplication of diploid rice, offers potential advantages such as larger grains, higher nutrient content, and increased resistance. However, its low fertility has been a significant barrier to its commercial viability. Recent advancements have focused on understanding and overcoming the sterility issues in autotetraploid rice hybrids to harness their heterosis potential. The development of high-fertility tetraploid rice lines and the application of molecular breeding techniques have shown promise in improving hybrid performance. This study synthesizes the genetic mechanisms underlying the low fertility of autotetraploid rice and its F1 hybrids from both cytological and molecular biological perspectives. It introduces the main types of high-fertility tetraploid rice and the latest research progress. Lastly, the study proposes ideas for future research on exploiting the heterosis of high-fertility autotetraploid rice, aiming to provide insights for polyploid rice breeding.

Keywords
Autotetraploid rice; Hybrid sterility; Heterosis; Fertility restoration; Molecular breeding
[Full-Text PDF] [Full-Flipping PDF] [Full-Text HTML]
Molecular Plant Breeding
• Volume 15
View Options
. PDF(787KB)
. FPDF(win)
. FPDF(mac)
. HTML
. Online fPDF
Associated material
. Readers' comments
Other articles by authors
. Qian Zhu
. Xiaoling Zhang
. Hui Zhang
. Juan Li
. Chunli Wang
. Dongsun Lee
. Lijuan Chen
Related articles
. Autotetraploid rice
. Hybrid sterility
. Heterosis
. Fertility restoration
. Molecular breeding
Tools
. Email to a friend
. Post a comment