Author Correspondence author
Plant Gene and Trait, 2022, Vol. 13, No. 2 doi: 10.5376/pgt.2022.13.0002
Received: 12 Apr., 2022 Accepted: 21 Apr., 2022 Published: 30 May, 2022
Li N.N., Sun Y.Q., and Li G.L., 2022, Isolation and expression analysis of BvNHX1 from Beta vulgaris with high sucrose, Plant Gene and Trait, 13(2): 1-9 (doi: 10.5376/pgt.2022.13.0002)
In present study, the vacuolar Na+/H+ exchanger gene was isolated by homologous cloning technology from the high-sucrose Beta vulgaris (‘BS02’), referred as BvNHX1, which contained an ORF of 1 659 bp, encoded 552 amino acids, the protein molecular weight was 61.31 kD, and the theoretical isoelectric point was 6.31. The protein encoded by BvNHX1 gene had 12 transmembrane domains and the conserved domains of Nhap, Na_H_Exchanger and b_cpa1 superfamily, and grouped with various NHXs of Chenopodiaceae plants, such as Salicornia europaea, Atriplex dimorphostegia, Suaeda salsa, and belonged to Class I in the vacuolar Na+/H+ exchanger family. Under 400 mmol/L NaCl, 200 mmol/L KCl and 15 mmol/L ABA, the expression of BvNHX1 reached the peaks in leaves and roots, respectively, and the expression of BvNHX1 in leaves was significantly higher than that in roots, indicating that the expression ofBvNHX1 was induced by NaCl, KCl and ABA, and it may play a greater role in leaves than roots in response to abiotic stresses. This study will lay a foundation for the study of the salt tolerance molecular mechanism in Beta vulgaris with high sucrose, and provide a solid and reliable basis for the genetic improvement of salt tolerance in Beta vulgaris with high sucrose.