Large-scale Genomic and Transcriptomic Profiles of Rice Hybrids Reveal a Core Mechanism Underlying Heterosis
Published:29 Jan.2023    Source:Genome Biology
Heterosis is widely used in agriculture. However, its molecular mechanisms are still unclear in plants. Here, we develop, sequence, and record the phenotypes of 418 hybrids from crosses between two testers and 265 rice varieties from a mini-core collection.
 
Phenotypic analysis shows that heterosis is dependent on genetic backgrounds and environments. By genome-wide association study of 418 hybrids and their parents, we find that nonadditive QTLs are the main genetic contributors to heterosis. We show that nonadditive QTLs are more sensitive to the genetic background and environment than additive ones. Further simulations and experimental analysis support a novel mechanism, homo-insufficiency under insufficient background (HoIIB), underlying heterosis. We propose heterosis in most cases is not due to heterozygote advantage but homozygote disadvantage under the insufficient genetic background.
 
Perennial cultivars are strongly preferred by farmers; growing them saves 58.1% of labour and 49.2% of input costs in each regrowth cycle. In 2021, perennial rice was grown on 15,333 ha by 44,752 smallholder farmers in southern China. Suited to a broad range of frost-free environments between 40° N and 40° S, perennial rice is a step change with potential to improve livelihoods, enhance soil quality and inspire research on other perennial grains.