Large-scale Long Terminal Repeat Insertions Produced a Significant Set of Novel Transcripts in Cotton
Published:03 May2023    Source:Science China Life Sciences
Genomic analysis has revealed that the 1,637-Mb Gossypium arboreum genome contains approximately 81% transposable elements (TEs), while only 57% of the 735-Mb G. raimondii genome is occupied by TEs. In this study, we investigated whether there were unknown transcripts associated with TE or TE fragments and, if so, how these new transcripts were evolved and regulated. As sequence depths increased from 4 to 100 G, a total of 10,284 novel intergenic transcripts (intergenic genes) were discovered. On average, approximately 84% of these intergenic transcripts possibly overlapped with the long terminal repeat (LTR) insertions in the otherwise untranscribed intergenic regions and were expressed at relatively low levels.
 
Most of these intergenic transcripts possessed no transcription activation markers, while the majority of the regular genic genes possessed at least one such marker. Genes without transcription activation markers formed their +1 and −1 nucleosomes more closely (only (117±1.4) bp apart), while twice as big spaces (approximately (403.5±46.0) bp apart) were detected for genes with the activation markers. The analysis of 183 previously assembled genomes across three different kingdoms demonstrated systematically that intergenic transcript numbers in a given genome correlated positively with its LTR content.
 
Evolutionary analysis revealed that genic genes originated during one of the whole-genome duplication events around 137.7 million years ago (MYA) for all eudicot genomes or 13.7 MYA for the Gossypium family, respectively, while the intergenic transcripts evolved around 1.6 MYA, resultant of the last LTR insertion. The characterization of these low-transcribed intergenic transcripts can facilitate our understanding of the potential biological roles played by LTRs during speciation and diversifications.