Genetic Transformation of Brassica napus with MSI-99m Gene Increases Resistance in Transgenic Plants to Sclerotinia sclerotiorum
Author Correspondence author
Molecular Plant Breeding, 2013, Vol. 4, No. 30 doi: 10.5376/mpb.2013.04.0030
Received: 29 Jul., 2013 Accepted: 26 Sep., 2013 Published: 27 Sep., 2013
Sang et al., Genetic Transformation of Brassica napus with MSI-99m Gene Increases Resistance in Transgenic Plants to Sclerotinia sclerotiorum, Molecular Plant Breeding, Vol.4, No.30 247-253 (doi: 10.5376/mpb.2013.04.0030)
Magainins are a class of antimicrobial peptides isolated from skin secretions of the African clawed frog Xenopus laevis. MSI-99 is a synthesized magainin II analogue with inhibitory effects to a wide spectrum of microbial organisms, including bacteria, fungus and viruses. Sclerotinia sclerotiorum is one of the most destructive pathogens in rape (Brassica napus), causing devastating yield losses. To evaluate its resistance to rape Sclerotina rot, we transferred the MSI-99m gene (modified MSI-99) into Chinese rape variety Zhongyou 821 using Agrobacterium-mediated method. Nine transformed lines carrying a MSI-99m expression vector were detected by polymerase chain reaction (PCR), among which seven lines expressed MSI-99m gene according to qRT–PCR analysis. Disease resistance analysis consistently showed that the high level expression of MSI-99m increased resistance to S. sclerotiorum in transgenic rape lines. This result demonstrated that MSI-99m gene may be applied as a resistant gene resource in rape for the improvement of rape varieties.