Research Article
Identification and Bioinformatics Analysis of ABC Transporter Gene Family in Hydrangea under Aluminum Stress
Author Correspondence author
Molecular Plant Breeding, 2022, Vol. 13, No. 31 doi: 10.5376/mpb.2022.13.0031
Received: 15 Dec., 2022 Accepted: 22 Dec., 2022 Published: 30 Dec., 2022
Chen H.X., Wang X., and Xu L., 2022, Identification and bioinformatics analysis of ABC transporter gene family in hydrangea under aluminum stress, Molecular Plant Breeding, 13(31): 1-15 (doi: 10.5376/mpb.2022.13.0031)
ABC transporters is a type of transmembrane transporters widely found in prokaryotes and eukaryotes. They are involved in plant signal transduction, secondary metabolite transport and abiotic stress response. According to the transcriptome data of Hydrangea, this study was proposed analyze the members of ABC transporter gene family, physical and chemical properties, gene structure, phylogeny and gene expression patterns under aluminum stress using bioinformatics method. The results showed that there were 48 members of ABC transporter gene family in Hydrangea, which belonged to 7 subfamilies respectively, among which the C subfamily had the most members; the subcellular localization results showed that 50% of the family members were located on the plasma membrane; the physical and chemical properties and domain analysis showed that most of the ABC transporters were hydrophobic proteins, and different subfamilies had specific conserved motifs, but motif1 and motif2 were all present in hydrangea ABC transporter; A phylogenetic tree was constructed with 129 ABC transporters of Arabidopsis thaliana, and 48 ABC transporters from Hydrangea were clustered into 7 subfamilies of Arabidopsis thaliana respectively. The expression profile analysis showed that the HmABCA1, HmABCC1, HmABCC6, HmABCC14 and HmABCD1 gene were upregulated in the root and HmABCG1 gene were up-regulated in leaves after aluminum stress treatment. The results provide a reference for further study on aluminum tolerance and expression regulation of ABC transporter genes in hydrangea.